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List of symbols

Scalars

Latin upper case letters

A
s

area of the reinforcement

A,B,C constants of parabola fitting

E elastic modulus in isotropic case

Ec elastic modulus of concrete

Es   elastic modulus of steel

E
Ti  tangent elastic modulus of the ith hardening section

E
Ts  tangent elastic modulus of the steel reinforcement

G shear modulus in isotropic case

G12 ; G13 ; G23  shear moduli in the symmetry planes of the orthotropy

G
f

fracture energy of concrete

H
i  hardening modulus of the ith hardening section

I
1

first scalar invariant of the in-plane stresses

J
2

second deviatoric scalar invariant of the in-plane stresses

L length of the specimen

Latin lower case letters

a
s,k

specific area of the reinforcement

b width

d denotes differential changes, or depth in the verification examples

f flow field

fc compressive strength

ft tensile strength

fy yield strength

h height

k
TS

parameter of the tension stiffening rules

mx ; my ; mxy specific bending moments

n exponent of the parabola function of non-linear concrete section based on EC
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nx ; ny ; nxy specific normal forces

qx ; qy specific transverse shear forces

t total thickness of the shell/plate

zk
mid thickness coordinate of the kth layer

z
s,k

effective height of the kth steel layer

Greek upper case letters

∆ denotes changes between iterative steps

Θ
s,k

angle of the steel layer

Greek lower case letters

α material parameter of the compression flow rule for concrete

β material parameter of the compression flow rule for concrete

βs shear reduction factor

γyz ; γxz ; γxy engineering shear strains

ε0x ; ε0y; γ0xy mid-plane strains

εx ; εy ; εz normal strains

ε1 ; ε2 in-plane principal total strains

εcr
n ; εcr

m
crack strains normal to the crack surfaces

ε
c2

strain at the top of the parabola in the compressed concrete material model

ε
eq

equivalent strain

εp
eq

equivalent plastic strain

ε
m

tension cut-off strain

ε
s

reinforcement total strain

εp
s

reinforcement plastic strain

ε
t

strain at crack initiation

ε
u

ultimate strain

κx ; κy ; κxy curvatures

λ plastic multiplier

ν Poisson's ratio

ν' effectiveness factor of cracked concrete

ρx, ρy reinforcement ratio in x and y directions
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σx ; σy ; σz normal stresses

σ
1 ; σ2 in-plane principal stresses

σ
n
; σ

m crack stresses normal to the crack surfaces

σ
0 equivalent effective stress

σ
c

compression stress

σ
e equivalent stress

σ
y yield stress

σ
s reinforcement stress

τyz ; τxz ; τxy shear stresses

Vectors, Matrices, Tensors

σ stress tensor with the in-plane stress components

εij ; ε ; ε strain tensor with different notations

ε ; εe ; εp total,elastic and plastic strain vector of the in-plane strains

ε
0

vector of ε
0x

, ε
0y

, γ
0xy

 total mid-plane strains

ε
k
; εe

k
; εp

k
vector of total elastic and plastic mid-plane strains of the kth layer

κ vector of κ
x
, κ

y
, κ

xy
 total curvatures

γ vector of γxz, γyz total transverse shear strains

a plastic flow vector

m vector of specific moments

n vector of specific normal forces

D in-plane elastic material stiffness matrix

Dep in-plane elasto-plastic material stiffness matrix in the local CS

D bending stiffness matrix in the local CS

B eccentricity (coupling) stiffness matrix in the local CS

A membrane stiffness matrix in the local CS

T(3x3) transformation matrix to the in-plane stiffnesses from local to global CS

K
e

element tangent stiffness matrix in local CS

K
e
glob element tangent stiffness matrix in global CS

F
e
int internal nodal forces on element level

F
e
ext external nodal forces on element level
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U
e

element displacement matrix

B
b
; B

m
; B

s
 strain-displacement matrices

Abbreviations

CS Coordinate System

EC EuroCode

ESLM Equivalent Single Layer Method

FE Finite Element

FSDT First-order Shear Deformation Theory

LM Layer-wise Model

LPSM Layered Plastic Shell Model

RC Reinforced Concrete
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Preface
In the first  part  of this  paper  we will  show the theoretical  background of  the implemented
layered plastic shell model (LPSM). This serves in FEM-Design to model plastic reinforced
concrete (RC) and structural steel shells. In the second part the application of the theory and the
new LPSM Finite Element (FE) will be shown across verification examples.

To formulate  the new plastic  shell  elements  complex techniques  have been combined.  This
makes  the  FEM-Design  3D  Structure  module  capable  to  handle  plasticity  by  the  linear
(standard) and the quadratic (fine) FE shells. The coupled membrane and bending behaviour is
covered, as well the ability to model complex yielding through the cross section by a layered or
layer-wise model (LM), see Refs. [1] [2] [3] [4] [5].

The LPSM is fully compatible with all  the existing elements as it  keeps the same equation
number of the discretized structure regardless the number of layers by using the same kind of
stiffness matrix homogenization as the laminated FE shells Ref. [5].

Another advantage is that the LM is applicable in a general commercial structural finite element
(FE) software with arbitrary geometry of shell regions and boundary conditions with additional
solid, shell and bar elements, because the degrees of freedom are compatible to each other.

The LPSM shell uses the first-order shear deformation shell theory (FSDT) or in other name the
Reissner-Mindlin theory, see Ref. [6]. This is in accordance with the former regular orthotropic
shells in FEM-Design Refs. [7] [8]. As a general structural analysis tool, the calculation results
of the LPSM shells are the displacements and internal forces, which provide an appropriate
result to design check. The in-plane stresses are calculated based on an elasto-plastic manner
according  to  Ref.  [9],  whereas  the  out-of-plane  components  are  based  on  elastic  theory.
Moreover results about the failure mode of the finite elements like concrete crushing, cracking
and steel fracture are also available.

Application of the LPSM shells is the analysis calculation of RC and structural steel shells. It
means that in the analysis FE calculation some of the design process of reinforced concrete and
steel will be involved into the calculation directly due to the complex plastic material model,
with the failure of the structure can be captured.

Speaking about shell model the proposed calculation method is mainly valid in the following
dimension range: 0.01 <  t/L < 0.1, where  t is the thickness of the LPSM shell and  L is the
average span length.

The precondition of using this new plastic shell calculation is a deep knowledge of shell theory
Refs. [6] [7], and understanding the basics of elasto-plastic theory Refs. [1] [9].

9
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Basic definition

A plate/shell is a structural element, its geometric configuration is a three-dimensional solid
whose thickness is small compared to its other dimensions.

These basic assumptions by the mechanical model of a plate/shell results that when somebody
would like to calculate a plate/shell (such as a surface RC structure) the appropriate mechanical
model is a plate/shell model instead of a beam model. Thus during the modelling of a surface
structure we should use a mechanical model which applicable by a surface structure namely e.g.
plate/shell theory. It means that (ignoring some special cases) the beam model is not applicable
to calculate a surface structure. If someone uses a beam model to design a surface structure the
results can be misleading and the solution could be very uneconomical.

10
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1 Few words about plasticity

1.1 Overview of the solution with the LPSM

In  FEM-Design modelling  of  non-reversible  material  behaviour  is  covered  by elasto-plastic
theory (Fig.  1a). The combination of the material model with the layered FSDT shell element
results in the LPSM element, which allows to create elasto-plastic structural models (example
shown in Fig. 1b and makes possible to simulate yielding of RC and Structural Steel shells and
follow non-linear load-displacement relationship as Fig. 1c shows.

To follow the equilibrium path like the one in Fig. 1c iterative method is used. Thus advancing
from one equilibrium point to the next load level predictions are made by using the tangent
stiffness matrix of the previous solution and the corresponding stress resultants are calculated
according to the material  law. The difference between the external load level and the stress
resultants results the  ∆F unbalanced forces which is equilibrable by corrective iterations Ref.
[9]. This solution process is equivalent with the plastic beam and connection solution of FEM-
Design.

In this solution method the plastic algorithm has three roles during the FE solution:

1. Satisfying the yield condition to ensure the material law,

2. Determination of the elasto-plastic material stiffness matrix to provide input for the FE
stiffness matrix calculation,

3. Integration of the stress-strain law to provide the stress resultants.

In  the  next  sections  the  mathematical  background  of  the  plastic  algorithm will  be  briefly
outlined.

1.2 The elasto-plastic material stiffness matrix formulation for shells

The elasto-plastic theory for LPSM is applied for the in-plane stress components  (σx, σy, τxy).
This means that throughout this chapter the σ and ε vectors denote vectors containing the three
in-plane components in the usual Voigt order.

11

1. Figure - Simulation with LPSM element



Theory of Plastic Shells FEM-Design 23 

The flow rule is always composed as the difference of an equivalent stress σe and the actual σ0

yield stress:

f (σ)=σe (σ)−σ0 (1.1)

where  σe is  composed of the in-plane stresses  based on appropriate  theories,  which will  be
discussed later, and σ0 is the equivalent effective stress, usually a result of some material failure
tests.

The fundamental relation in small strain plasticity is that a small strain increment is composed
of an elastic and a plastic part:

d ε=d εe
+d ε

p (1.2)

where the plastic strain can be expressed using associative plasticity as follows Ref. [10]:

d ε
p
=d λ

∂ f
∂σ

=d λ a  (1.3)

where dλ is the rate of the plastic multiplicator (a positive multiplier). The prefix d denotes rate
or in engineering sense small change of the prefixed quantity.

With  this  approximation  the  material  stiffness  matrices  and  the  global  structural  stiffness
matrices remain symmetric. This is a time and memory-saving advantage during the calculation,
see Ref. [9].

In general plasticity plastic strains occur during yielding when

f (σ)=0 (1.4)
and 

(∂ f
∂σ )

T

d σ=0  (1.5)

where the latter equation is the so called normality rule, which ensures that dεp is normal to the
flow field.

If the yield function f(σ) < 0, then after a small increment the stress state is linear elastic. With
geometrical representation this means that the stress state is located inside the flow field. If the
yield function f(σ)  ≥ 0, then the stress state reached the end of the linear elastic behaviour. In
this case a plastic strain increment will arise. According to the normality rule (1.5) the direction
of the plastic strain is given if the direction of the stress increment is known. To relate the stress
increment of the actual stress state to the total strain increment the additive split of strains (1.2)
and the Hooke's law, can be used:

d σ=D d ε
e
=D(d ε−d ε

p
)=D d ε−D d ε

p  (1.6)

where D is the in-plane linear elastic material stiffness matrix assuming isotropic elasticity:

D=
E

1−ν 2 [
1 ν 0
ν 1 0
0 0 (1−ν )/2] (1.7)

During FE calculation a finite  strain and finite  stress increment  are  given in  one load-step.
Therefore it looks reasonable to rearrange (1.6) to:

d σ=D ep d ε  (1.8)

12
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where  Dep  is  the so-called elasto-plastic material  stiffness matrix,  which can be obtained by
substituting (1.3) into (1.6) and expressing dλ using (1.5) with combination of (1.6) Ref. [9]. All
of this results in:

Dep
=D−D(aaT D

aT D a )  (1.9)

Based on (1.9) it is obvious that the elasto-plastic material stiffness matrix is symmetric, if the
linear elastic perfectly plastic material model is associated (the yield function equivalent to the
plastic potential).

1.3 Hardening in the plasticity model

The non-linear hardening section of the characteristic curve of a material (example shown in
Fig. 1a) can be described using hardening theories. In FEM-Design the section between linear-
elastic  and  perfectly-plastic  zones  is  approximated  by using  n number  of  piecewise  linear
hardening lines as Fig. 2 shows.

To follow this path the fixed yield stress in (1.1) is replaced to a function: σ0(εp
eq), which can be

formulated along the first linear piece by using isotropic strain hardening Ref. [9]:

σ0(εeq
p
)=σ y+H 1εeq

p (1.10)

where H1 is the plastic hardening modulus corresponding to the 1st linear section:

H 1=
ET1

1−ET1/E
(1.11)

For the further sections this can be generalized straightforwardly.

In (1.10) εp
eq is the equivalent plastic strain, a history variable, which establishes the connection 

between the uniaxial material laws and the in-plane strain state of the LPSM shells:

d εeq
p
=B(σ )d λ (1.12)

where B(σ) can be derived based on the corresponding flow rule Ref. [9].
As the yield stress varies during hardening (1.10), the normality condition (1.5) becomes:

13
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df =aT d σ−H i d εeq
p (1.13)

And  repeating  the  derivation  given  in  Section  1.2 the  elasto-plastic  tangent  matrix  can  be
obtained with hardening included:

Dep
=D−D( aaT D

aT D a+B (σ)H i
) (1.14)

1.4 Returning map algorithm

The solution method outlined in Section 1.1 results that after an increment the stress state can
move outside the flow field f(σ) > 0 as Fig. 3 shows.

This condition is non-admissible therefore to fulfil the plastic flow rule from point B a plastic
return has to be applied. In-FEM design this is done by an implicit method Ref. [9]:

σC=σ B−Δλ D ac (1.15)

where ac is the normal of the flow field in point C and equals to the direction of the plastic strain
according to (1.3). The equation above is solved by using an iterative algorithm where the first
estimation is made based on the normal in point B and a corrector step is applied according to
the residuum stresses:

r=σC−σB−Δλ D ac (1.16)

As the normal of the first estimate does not generally equals to the normal in the final point
using the residuum further iterations are done until σc satisfies the flow rule with the prescribed
accuracy: f(σc)<fTOL.

2 Calculation with the layered plastic shell model

2.1 Layerwise stresses

To be able to capture the through-thickness variation the FE shells are divided into n arbitrary
number of layers as Fig. 4. shows.

14
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During the incremental solution of a FE model as shown in Fig. 1, we can express the total shell
strains for each shell element in each integration point according to the Reissner-Mindlin or in
other name the First Order Shear Deformation plate Theory (FSDT). For this the iU

e
 element

nodal solution vector has to be used Ref. [6]:

[
κ
ε 0
γ ]=[

Bb

Bm

Bs
] U e

i
(2.1)

where on the left side:

κ – is the vector of κx, κy, κxy total curvatures [rad/m],

ε
0
 – is the vector of ε0x, ε0y, γ0xy total mid-plane strains [-].

γ – is the vector of γxz, γyz total transverse shear strains [-].

calculated in the reference plane of the shell using the local shell coordinate system denoted by
the ' sign in Fig. 4. On the right B

b
, B

m
, and B

s
 are the strain-displacement matrices according to

the MITC+ theory Ref. [7]. From these shell strains the in-plane strain components of each layer
can be expressed at the middle of the layer as:

εk=ε0+κ z k
mid (2.2)

where zk
mid is the through thickness coordinate of the middle of the kth layer measured from the

reference plane (mid-plane) of the shell as Fig. 5 shows.

15
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ε
k
 consists of the three in-plane strain components in engineering sense: εx, εy, γxy; in accordance

with the in-plane stress components introduced for plastic calculations in Section 1.2. The out-
of-plane  shear  strains  (γxz,  γyz)  are  considered  to  be  constant  through  the  shell  thickness  in
accordance with the FSDT theory Ref. [6].

If the material point is elastic, the in-plane stresses at the middle of the layer can be calculated
as:

σ k=Dε k  (2.3)

similarly the transverse stresses will be:

[τ xz
τ yz]=[G13 0

0 G23
]⋅[γ xz
γ yz ]  (2.4)

where  G
13

,  G
23

 are the out-of plane shear moduli  and the equation above is  valid along the

thickness as Fig. 5 shows.

Advancing along the  equilibrium path  shown in  Fig.  1 we will  reach  the  point,  where  the
stresses calculated in the layers based on the total strains will violate the material law (1.4). In
this case the stress state will lie outside the flow filed, thus return mapping has to be applied as it
was shown in Section  1.4 in Fig.  3. During the return from point B to C the material law is
satisfied  in  each  layer  by  calculating  appropriate  plastic  strains.  Thus  in  plastic  state  of  a
material point the stress-strain law for the in-plane components can be formulated as:

σ k=Dε k
e
=D(ε k−ε k

p
) . (2.5)

These calculated plastic  strains  and their  increments  in  (1.2)  are  serving as a  state  variable
during the solution of the FE system.

An example is shown in Fig. 6, where the top and the bottom layers are already in plastic state.
Furthermore Fig. 6 shows the constant stress assumption which states: if the stress in the middle
of a layer reaches the yield stress, from that point the whole layer is considered to be in plastic
state, hence the stress state will move on the yield surface and will be constant through the
thickness of the layer. This means that the equivalent stress in (1.1) in the layer will equal to the
yield stress.

16
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Applying this  approach in  each layer  and each integration point  of the FE shell  the plastic
material model and the corresponding algorithm presented in Sections 1.2-1.4 can be integrated.

2.2 Calculation of stress resultants

After calculation of the stress state in all layers the stress resultants in an integration point can
be obtained by simple integration over the thickness layer-by-layer which gives the following
form for the in-plane stress-resultants:

[m
n ]=∑k=1

n

∫zk−1

zk

[σ k z
σ k ]dz (2.6)

where  m is  the  vector  of  specific  moments  and  n is  the  vector  of  specific  normal  forces.
Similarly the transverse shear forces can be calculated based on the transverse stresses.

In  case  of  elastic  state  all  layers  are  homogeneous,  hence  the  relationship  between  stress
resultants and strains is the following well known formula:

[
mx

m y

m xy

nx

n y

nxy

]=[
E t 3

12(1−ν 2
)

ν E t3

12(1−ν 2
)

0 0 0 0

ν E t 3

12(1−ν 2
)

E t 3

12(1−ν 2
)

0 0 0 0

0 0
G t 3

12
0 0 0

0 0 0
E t

1−ν 2

ν E t

1−ν 2 0

0 0 0
ν E t
1−ν 2

E t
1−ν 2 0

0 0 0 0 0 G t

][ κ x
κ y
κ xy
ε 0x
ε 0y
γ 0xy

] , (2.7)

whereas for the out of plane components in case of a homogeneous Reissner-Mindlin shell we
can write Ref. [6]:

[qx

q y
]=[

5
6

G t 0

0
5
6

G t][γ xz
γ yz] (2.8)

where E, G and ν are the elastic modulus, shear modulus and Poisson's ratio in case of isotropy
and t is the thickness of the shell.

On the left sides of (2.7) and (2.8) the values are the internal forces of a shell, namely:

mx, my, mxy – specific bending moments [kNm/m] (elements of m),

nx, ny, nxy – specific normal forces [kN/m] (elements of n),

qx, qy – specific transverse shear forces [kN/m] (elements of q).

17
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In case, if at least one layer is in plastic condition equation (2.7) has to be adapted according to
the constant stress assumption. So the in-plane stress resultant are determined as follows:

[m
n ]=∑k=1

n

[σ k t k zk
mid

σ k t k
]dz (2.9)

The transverse shear  forces  can always  be calculated based on (2.8) due to  the assumption
introduced in Chapter 1, that only the in-plane stresses are involved in plasticity.

The stress resultants calculated in each integration point can be converted to nodal forces simply
by using:

F e
i n t
=∫[

Bb

Bm

Bs
]

T

[
m
n
q ]dA (2.10)

Converting these vectors from the element local coordinate system to the global and compiling
all elements over the whole FE structure the ∆F unbalanced forces visualized in Fig. 1 can be
determined:

ΔF=Fext
−F i n t (2.11)

2.3 Homogenization method for the formulation of the element stiffness matrix

As it was discussed the presented plastic material model is fitted into a layered model Ref. [11].
For the iterative solution presented in Section  1.1 the necessary internal forces have already
been  presented  based  on  the  plastic  theory.  In  this  section  the  formulation  of  the  element
stiffness matrix will be briefly presented.

To be compatible with other finite elements with respect to number of degrees of freedom and
number of equations the well known Equivalent Single Layer Method (ESLM) theory have been
applied to formulate a homogenized matrix from all of the layers Ref. [5].

The main modification compared to the standard ESLM theory is to replace the elastic material
matrix D to the elasto-plastic matrix Dep, which equals either to (1.9) or (1.14) depending on the
applied plasticity model. Or it can be Dep=D given in (1.7) if the material is in elastic state.

As  it  was  shown  in  (1.8),  that  Dep is  a  tangent  material  stiffness  matrix  which  establishes
connection between the current stress and strain increments. Fitting these tangent matrices into
the  homogenization  method  of  the  ESLM  theory  the  D,  A and  B bending,  membrane  and
eccentricity (coupling) stiffness matrices can be formulated as:

Ā=∑
k=1

n

D ep
k ( zk+1−zk)

B̄=
1
2
∑
k=1

n

Dep
k (z k+1

2
−z k

2
)

D̄=
1
3∑k=1

n

D ep
k ( zk+1

3
−zk

3
)

(2.12)

where  Dep is  the elasto-plastic material  stiffness matrix given in the x'-y'-z'  local coordinate
system according to Fig. 4.

18
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These D, A and B homogenized matrices are expressing the current tangent material stiffness in
the local coordinate system considering the actual state of all layers in an integration point.

From these matrices the element stiffness matrix can be formulated using numerical integration:

K e= ∑
i=1

int. point

∫Bb
T D̄i Bb+Bm

T Āi Bm+Bb
T D̄i Bm+Bm

T Āi Bb+Bs
T S̄ i B s dA (2.13)

where in the last term S is the shear matrix which can be calculated similarly as the membrane
matrix using the matrix in (2.8) Ref. [5]. Summation in the equation above goes over all of the
integration points and the resultant  Ke is the element tangent stiffness matrix in the local CS
according to the actual plastic state of the LPSM finite element. Based on this tangent stiffness
matrix in the local CS, the global element tangent stiffness matrix Ke can be formulated with the
aim of the appropriate transformation matrix from local to global system, T(3x3).

2.4 Plasticity in use with respect of the LPSM shell element

The discussed  element  stiffness  matrix  and stress  resultants  considering  plasticity serves  as
fundamental building blocks of the LPSM solution. To follow the equilibrium path during a
finite element calculation in each iteration a linear prediction is made as discussed in Section 1.1
and shown in Fig. 1. This linearization based on the tangent of the previous point causes drift-
off from the equilibrium path, and cause that the internal stress state crosses the flow field as
shown in Fig. 3 when we moved from point A to B.
To avoid this drift-off the three roles of the plastic calculation discussed in Section 1.1 has to be
applied layer-by-layer in each integration point.

1. An example is shown in Figure 6, where the elastic trial stress exceeds the yield stress in
the top and bottom layers, thus the f(σ) ≥ 0 condition activates the plastic algorithm of
the LPSM element. The algorithm will first satisfy the flow rule and return the stresses in
each layer  by calculating the corresponding plastic strains.  As it  is  shown in Fig.  6,
during  plastic  calculation  the  whole  layer  is  assumed  to  be  plastic.  To  simplify
calculation  in  this  state  LPSM  uses  the  strain  data  in  the  middle  of  the  layer  for
calculating the elastic trial stress and the returned stress will be constant through the
whole  layer.  Hence  the  number  of  layers  determines  the  resolution  of  the  stress
distribution through the thickness for each elements.

2. Next, based on the returned stresses the Dep stiffness matrices will be generated for each
layer and Ke will be evaluated according to Section 2.3.

3. Similarly, the internal forces in the integration points can be calculated according to (2.8)
and (2.9) using the layer-wise stresses, and ∆F can be formulated based on Section 2.2.

Note that transverse shear related quantities are calculated based on elastic theory regardless of
the state of the layers. Therefore these stress resultants can always be calculated from the out of
plane  strains  based  on  the  FSDT theory,  and  similarly  the  corresponding  elements  in  the
stiffness matrix are determined based on the out-of-plane shear moduli of the layers Ref. [12].

Applying these three steps a general non-linear finite element solution can be accomplished as it
is shown in Fig. 1 using a traditional Newton-Raphson solution Ref. [9].
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3 Constitutive laws of structural steel shells

3.1 General steel behaviour

It is well known that steel exhibits plastic flow under constant stress, which can be modelled by
perfectly plastic theory.  This assumption is  adopted in FEM-Design for modelling structural
steel shell. This is an excellent approximation for mild steel, which is the most common steel
type due to its relatively low price. The corresponding stress strain curve of a general mild still
is shown in Fig.  7. In case of other types of steel like high-carbon or high-tensile steels the
perfectly plastic theory is still a good engineering choice, although these types may show some
more hardening after yielding Ref. [13].

Steels have the remarkable feature that their crystalline structure causes that only the shear stress
alone has an effect on the yielding, and plastic volume change is negligible even in case of large
plastic deformations. This is why the octahedral shear stress condition of von Mises shows a
very good agreement with experimental data and this rule without plastic hardening is generally
adopted for establishing the stress-strain law for metals.

3.2 Plasticity in case of structural steel

In FEM-Design plastic yielding of steel shells is covered by the von Mises theory assuming
elastic perfectly plastic material. As mentioned before only in-plane plastic flow is considered
which results in the following σe equivalent stress in the flow rule given by (1.1):

σ e=√3J 2=√σ x
2
+σ y

2
−σ x σ y+3τ xy

2 (3.1)

where J2 is the second scalar invariant of the deviatoric stresses based on the in-plane stress
components. The shape of this flow field in the σ

1
-σ

2
 plane is the well known ellipse shown in

Fig. 8.

Substituting the equivalent stress given in (3.1) into (1.1) all the necessary structures for the
plastic calculation can be derived based on Section 1.2.

For structural steel perfectly plastic behaviour is assumed, thus the hardening given in Section
1.3 can be omitted during the derivation.
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7. Figure - Stress-strain curve of a mild steel
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3.3 Fracture of structural steel

Because perfectly plastic behaviour is assumed after reaching the yield stress portions of the
structure may suffer displacements without any control, therefore to give a better estimation for
the deflection and load bearing capacity the fracture point of the steel is monitored during the
simulation.  Fig.  9 shows the  idealized  version  of  Fig.  8,  where  the  ultimate  limit  strain  is
denoted by εu.  After  reaching  εu fracture in  the corresponding layer  of the material  point  is
assumed. In case of fracture a sudden release of stresses is assumed and the contribution of that
layer in the specific integration point to the structural tangent stiffness is assumed to vanish:

Dep
=0 (3.2)

Applying this damage model the behaviour of the structure can be captured accurately near the
end of the load carrying capacity of the structure.

To be able to use the fracture strain defined by uniaxial measurements, FEM-Design defines an
equivalent total strain which relates the multiaxial strain state to the uniaxial criteria Ref. [9]:

εeq=√3 J 2=√(ε1
2−ε1ε2+ε2

2) (3.3)

where ε1 and ε2 are the in-plane total principal strains. Comparing εeq to εu the damage model can
be applied to complex loading situations.
This  equivalent  strain  is  evaluated  based  on the  εk mid-layer  strains  except  in  case  of  the
outermost top and bottom layers, where the strains of the external fibres are used to calculate εeq.
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8. Figure - The von Mises flow field

9. Figure - Elastic-Perfectly Plastic material law of steel
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4 Constitutive laws of reinforced concrete shells

4.1 Concrete

4.1.1 General concrete behaviour

Before  discussing  the  numerical  modelling  of  concrete  in  finite  element  environment  some
typical mechanical properties and experimental stress-strain relations under uniaxial and biaxial
states of stress are summarized. Data required for the definition of material model parameters
through experimental behaviour is the fundamental basis to develop mathematical models Ref.
[3].  Detailed  measurement  data  is  especially important  in  case of  concrete  which  is  a  very
complex composite  material  consisting  of  a  mixture  of  aggregate  and matrix  of  mortar.  Its
stress-strain  behaviour  is  generally  determined  by  the  evolution  of  the  initially  existing
microcracks, which propagation is driven by the external loads. As these phenomena happen on
micro-scale,  measurement  data  is  essential  to  develop a  phenomenal  material  model,  which
captures the macroscopic stress-strain relationship and fits for a continuum FE model.

Uniaxial data is the very basis to create a material model. Typical uniaxial stress-strain curves
can be seen in Figs. 10 and 11 representing a 28 days old concrete. Curves are corresponding to
concretes  having  different  fc compression  strength.  The  highly  non-linear  parabola  like
behaviour in the compression zone can be seen in Fig. 10. This non-linear behaviour is a result
of the existing microcracks especially along the interface of the aggregate particles and mortar.
The behaviour in the compression zone is usually assumed to be linear up to 30-40% of the
compression strength as until this point the initially existing crack surfaces remain more or less
unchanged. Leaving the elastic domain behind the number, width and length of bond cracks
increase and form mortar cracks. This is a stable procedure in the compression zone up to the
compression strength, but already a damage of the material which is non-reversible. Reaching
the maximal compression strength and further increasing the load can lead to evolution of crack
zones or internal damage which will cause the degradation of stiffness in form of unstable crack
propagation.  This  last  zone  is  considered  to  be  a  mixture  of  material  degradation  and  the
structural behaviour of the specimen. That is why the descending branch cannot be considered
to be a pure material behaviour Ref. [13]. This effect was shown by van Mier using specimens
with different heights [mm] in a compression test. As Fig. 12 shows the curves are not identical,
but their slopes are decreasing with increasing specimen height.
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In the tension zone (Fig. 11) the elastic behaviour lasts almost up to the ft tension strength. The
modulus of elasticity is usually taken to be the same as in the compression zone. The non-linear
zone before reaching ft is very small therefore it is usually neglected during the formulation of a
material  model.  Near  the  tension  strength  the  growth  of  microcracks  start,  and a  very fast
propagation of the crack can be observed along the interface of the aggregate and the mortar.
This  causes  the very brittle  behaviour  of concrete  in  the tension zone,  and that  is  why the
descending part of the stress strain curve is difficult to follow.
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10. Figure - Typical set of uniaxial stress-strain compression curves

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030 0,0035 0,0040

0

5

10

15

20

25

30

35

40

Compressive strain [-]

C
om

p
re

ss
iv

e 
st

re
ss

 [
M

P
a]

11. Figure - Typical set of uniaxial stress-strain tension curves

0,00000 0,00005 0,00010 0,00015 0,00020 0,00025 0,00030

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Tensile strain [-]

T
en

si
le

 s
tr

es
s 

[M
P

a]



Theory of Plastic Shells FEM-Design 23 

To form and adequate material model - beside the uniaxial behaviour - multiaxial measurements
are also necessary. The most well known biaxial measurements are done by Kupfer [14], who
defined a biaxial failure curve for concrete shown in Fig.  13. To this day this measurement is
considered to be one of the most reliable regarding the tested material and boundary conditions
of the tests Ref. [3].

The  corresponding  equations  for  the  curves  in  the  tension,  tension-compression,  and
compression zones are respectively:

σ1= f t (4.1)
σ1

f t

+0.8
σ2

f c

=1 (4.2)

(
σ1

f c

+
σ2

f c

)
2

−
σ1

f c

−3.65
σ2

f c

=1 (4.3)
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13. Figure - Biaxial failure curve of concrete

12. Figure - Influence of specimen height (in [mm]) on uniaxial stress-strain curve

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

H=200

H=100

H=50

Strain/Strain at  maximal stress [-]

St
re

ss
/M

ax
im

al
 S

tr
es

s 
[-

]



Theory of Plastic Shells FEM-Design 23 

This  work showed that  in  the tension zone the strength of the concrete  is  not  significantly
affected by the ratio of the σ

1
 and σ

2 
tensile stresses.

In the tension-compression zone compressive stress at  failure decreases as the tensile  stress
increases.
In case of biaxial compression Fig. 13 shows very well that the strength of concrete can increase
up to 16-20% depending on the σ

1
/ σ

2
 ratio and the concrete class Ref. [14]. This phenomena is

attributed to the confinement of the microcracks and the Poisson's ratio Ref. [3]. Combining the
presented failure curve in Fig. 13 with the uniaxial stress-strain behaviour in Figs. 10 and 11 the
material model for concrete can be developed.

4.1.2 Plasticity in concrete

Concrete is a composite material consists of aggregate and matrix of mortar, which makes its
physical  behaviour  very complex  and  raises  the  need for  a  more  complex constitutive  law
compared to the one presented for steel in Chapter 3. Although being a composite material, the
initial state of concrete is assumed to be isotropic and homogeneous in FE scale, hence material
matrix can be given by (1.7). Starting from this assumption the material behaviour is captured
using a plastic model which falls into the category of phenomenal models. As it was mentioned
in Chapter 3 plasticity was originally developed for metals, but from macroscopic point of view
concrete  shows  some  similarities  regardless  of  its  completely  different  microstructure.  For
example the stress-strain law of concrete is also non-linear with a large irreversible strain upon
unloading, and concrete subjected to confinement pressure can show ductile behaviour similarly
as metals. The irreversible strains in case of concrete are arising due to microcracking instead of
crystalline changes,  nonetheless plastic theory is  capable to  treat  this  effect on macroscopic
level.

To  cover  the  curves  showed  in  Section  4.1.1 the  plastic  model  must  contain  some  basic
assumptions:

1. An  initial  yield  surface  which  defines  the  stress  level  at  which  plastic  deformation
begins.  In FEM-Design this  is taken to be 40% of the uniaxial compression strength
shown in Fig. 14.

2. A hardening rule which defines the change of the loading surface and material properties
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14. Figure - Uniaxial stress-strain law model for compressed concrete
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during plastic flow. For this FEM-Design uses the compression zone parabola given by
Eurocode EN 1992.1.1 shown in Fig. 15, and defined as:

σ c= f c[1−(1− ϵc
ϵc2)

n

] (4.4)

Where  εc2 is the top of the parabola,  n is the exponent defined in the EC. This stress-
strain curve is used in the 'Hardening' zone shown in Fig. 14, which starts by reaching
40% of the compression strength and lasts up to the compression strength fc. Note, that
throughout Chapter 4 we consequently use fc to denote the compression strength and do
not distinguish between design and characteristic values as it is done in Fig. 15. The real
value of the compression strength is always determined in FEM-Design based on the
actual settings of the user in accordance with the Eurocode. (In Chapter 5 you can find
detailed description about the used parameters for the material model inputs in case of
the different limit states). Based on (4.4) the uniaxial stress-strain curve can be expressed
and  using  the  discretization  given  in  Section  1.3 the  hardening  parameters  can  be
estimated  for  the  isotropic  strain  hardening  model,  which  will  be  applied  for  the
calculation of compressed concrete.

3. A plastic flow rule is also necessary.  It  was already stated in Section  1.2 that FEM-
Design uses an associated flow rule. In the literature there are also non-associated flow
models available for concrete, but from practical point of view FEM-Design uses the
normality  rule  (1.3).  Using  this  assumption  concrete  can  be  handled  accurately and
calculations can be done in an economic way Refs.  [3][13]. The potential function for
associated flow can be derived based on (1.3) using the equivalent stresses which are
defined in the next point.

4. The ultimate strength condition (i.e. failure condition) is set based on the uniaxial tensile
and compression strengths and the failure envelope which is developed based on Fig. 13.
The  crucial  point  for  the  development  of  a  numerical  model  is  to  find  the  best
compromise between numerical stability and accuracy. In FEM-Design this is done by
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15. Figure - Parabola-rectangle diagram for concrete under compression
according to the Eurocode



Theory of Plastic Shells FEM-Design 23 

the following piecewise flow field:

f (σ)=σ1− f t=0 (4.5)

f (σ)=1−
σ1

f c

−
σ2

f t

=0 (4.6)

f (σ)=α I 1+√(3β J 2)−σ0(εeq
p
)=0 (4.7)

Where σ1 and σ2 are the first and second principal stresses respectively to Fig. 16, I1 is
the first scalar invariant, J2 is the second deviatoric invariant already defined in Section
3.2,  and  α, β are  material  constants  (α=0.1398,  β=1.299).  From the  three  equations
above, (4.5) formulates the Rankin failure theory in the tension zone, (4.6) approximates
(4.2) - the Kupfer tension-compression zone - by using straight lines, and (4.7) describes
the failure curve in the compression zone based on a generalized Prager rule Ref. [10].
In (4.7)  σ0=fc at failure, otherwise it can be given based on (4.4) applying (1.10) and
(1.11) from Section 1.3. As (4.7) is dependent on the I1 mean normal stress the failure
curve  is  able  to  capture  the  plastic  volume  dilatation  near  failure  under  pressure
conditions Ref. [3]. Using these the failure envelope used in FEM-Design give the curve
shown in Fig.  16. Hardening is also visualized in Fig.  16 by expanding the red initial
yield surface.

These points are serving as the very fundament of the plastic model for concrete material in
FEM-Design.  But  as  plasticity  was  originally  developed  for  metals,  further  considerable
extensions of the model are necessary which are discussed in the next sections.

4.1.3 Crushing condition in concrete

Reaching the failure curve shown in Fig.  16 the material model becomes perfectly plastic as
suggested by the Eurocode in Fig. 15. This is in accordance with the experimental observations
discussed  in  Section  4.1.1,  that  the  descending part  in  the  compression  zone is  not  a  pure
material property therefore it is not modelled by the material model in FEM-Design. Instead the
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16. Figure - Concrete plasticity in FEM-Design
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crushing limit  of  the  compressed  concrete  is  implemented  and monitored  for  each material
point. The crushing type fracture of concrete is a strain controlled phenomenon, which means
that the uniaxial compression limit  εcu2 is compared to an equivalent strain, if at least one in-
plane principal strain is in compression state (ε2 < 0). This means, that damage model is applied
both in the compression and tension-compression zones.  FEM-Design offers several options
based on the literature to calculate the equivalent strain εeq:

• Crisfield rule Ref. [9]:

εeq=
2

√(3)
√(ε1

2
+ε1ε2+ε2

2
) (4.8)

• Cervera rule Ref. [4]:

εeq=√(ε1
2−ε1ε2+ε2

2) (4.9)

• Hinton rule Ref. [1]:

εeq=0.1775(ε1+ε2)+√((0.1775(ε1+ε2))
2+1.355(ε1

2−ε1ε2+ε2
2)) (4.10)

• Prager rule:

εeq=α(ε1+ε2)+√(β(ε1
2−ε1 ε2+ε2

2)) (4.11)

Similarly as in Section 3.3 εeq is evaluated layer-by-layer and compared to εcu2 to handle complex
deformation situations. In the tension-compression zone the ε1 tension strain is neglected during
the calculation of the equivalent strain, if the concrete is cracked Ref. [3]. Reaching the crushing
strain  limit  we  consider  the  material  point  fully  damaged,  thus  losing  all  its  characteristic
strength and rigidity:

Dep
=0 (4.12)

and its contribution to the vector of stresses will be zero as well assuming an immediate stress
release.

4.1.4 Cracking effect in concrete 

4.1.4.1 Cracking model

Cracking is a complex phenomenon which mainly drives the tensile failure of concrete, and it is
a major factor of the non-linear behaviour of concrete. According to Rankin's failure theory
(4.5) failure occurs when the maximal stress in any direction exceeds the  ft tensile strength
(tension cut-off). This theory represents tensile failure with reasonable accuracy. Reaching  ft

cracking is  assumed and the crack model is  activated.  This means that  cracks start  to form
perpendicular to the principal direction along the stresses which reach the tensile strengths as
shown in Fig.  17. This means that it is possible to have one or two cracks in a material point
depending on the stress state. Cracks are assumed to remain in-plane and always perpendicular
to each other.
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FEM-Design implements a rotating crack model,  which means that  from the point of crack
initiation the crack direction is determined by the evolution of the ε1 and ε2 principal strains Ref.
[1]. This is in accordance with the experimental observations that first microcracks arise and
after the increase of loading these microcracks become more and more aligned and start melting
together, so formulating visible cracks in the structure Ref.  [15]. Compared to the fixed crack
models rotating crack models avoid the generation of fictitious shear stresses Ref. [15].

Important to note that cracking failure, similarly as plasticity, is handled layer-by-layer, thus the
through thickness variation of the crack depth can be captured as well.

During cracking the plastic condition formulated by (4.5) needs to be modified to follow the
crack direction, thus stresses and strains are equilibrated as:

[
σn
σm

0 ]=E[
ε1−εn

p
−εn

cr

ε2−εm
p
−εm

cr

0
] (4.13)

where εcr
n, εcr

m  are the crack strains normal to the crack surface which are necessary to satisfy
the prescribed stresses normal to the crack surfaces. They are calculated based on the basic rules
of plasticity given in Section 1.2 harmonized with the crack condition. The usage of the crack
strains results in a smeared crack model, which has the advantage compared to a discrete crack
model, that discontinuities caused by the cracks are distributed over the area of the integration
points, allowing an efficient handling of the material degradation caused by cracking, and being
capable to capture the structural behaviour of the system very well.

As soon as the crack surfaces are formulated the material stiffness along the crack normals is
considered to be zero. Moreover the Poisson's ratio of the material point is set to zero, thus σn

and σm become independent as (4.13) shows, and the crack surface is assumed to be shear free.
Hence, in case if only one crack appears both in the tension and tension-compression zones σm is
treated either according to elastic or plastic theories corresponding to the stress state of the
material point discussed earlier. This means that after a crack calculation the plastic strains may
be also updated in a subsequent step.

In case of plain concrete  σn,  σm are  dropped to zero immediately as the crack surfaces  are
formulated.  This is a usual assumption as concrete is very brittle against tensile loads. This
perfectly brittle behaviour is a good assumption as cracking is a factor of primary concern in the
deformation analysis and it's influence on the collapse load is usually minor. However in case of
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17. Figure - Cracks in the integration point of the LPSM element
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reinforced concrete macroscopic characteristic changes in the post-critical zone (ε>εt). This is
discussed in the next section.

4.1.4.2 Tension stiffening effect in case of cracking

If the concrete has reinforcement steel due to the bond between reinforcement and concrete,
cracked concrete is  able  to  carry a  certain amount  of tensile load,  which contributes  to the
overall  stiffness  of  the  structure.  This  means  that  stress  release  is  not  complete  at  the
formulation of the cracks, but after a sudden stress release a gradual decrease in the stress can be
observed as  Fig.  18 shows.  The gradual  decrease is  linked to  the formulation of secondary
cracks which are releasing the bond between steel and concrete. This effect is known as the
tension  stiffening  effect  of  reinforced  cracked  concrete.  This  is  a  complex  microscopic
phenomena, but it can be taken into account in a smeared crack model on macroscopic level, by
considering that the crack stresses σn, σm are driven based on the ε1 and ε2 total strains as Fig. 18
shows. On crack model level this means a rotation and asymmetric constriction of the initial
Rankin type failure surface during crack propagation. As the stresses are strain driven during
cracking  we  can  consider  the  FEM-Design  crack  model  as  maximum strain  failure  theory
associated with a damage model of the material, which is formulated by the elimination of the
material  stiffness  along the  tensile  direction  by calculating  an  appropriate  material  stiffness
matrix based on (1.9).

Fig. 18 also shows the elastic unloading which may happen due to rearrangement of the stresses
in structural level. This elastic unloading happens linearly using the original elastic modulus of
the material point.

The  exact  shape  of  the  tension  stiffening  curve  can  be  determined  based  on  experiments.
Appropriate theories fitted onto the experimental observations are available as different options
in FEM-Design:

• Neglecting the initial stress release at the crack initiation the gradual release of the stress
can be easily approximated by a linear curve:

σn=
f t

(kTS−1) (k TS−
ε1
ε t ) (4.14)

where kTS is a free parameter with the εm tension cut-off can be set as shown in Fig. 19.
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18. Figure - Degradation of concrete material due to cracking in case of
tension stiffening
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• Hinton and Figueiras defined the curve shown in Fig. 18 based on experiments Refs. [1]
[3]:

σ n=kTS f t(1−
ε1
εm ) (4.15)

where kTS is used to set the initial stress release as shown in Fig. 20 and εm=0.002.

• Vecchio defined a decaying curve to simulate the increased shear transfer and dowel
effects in case of sheared panels Ref. [16]:
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19. Figure - Tension stiffening based on linear rule with adjustable tension cut-off
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20. Figure - Tension stiffening rule with adjustable initial drop
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σn=
f t

(1+√k TSε1)
(4.16)

where kTS controls both the initial stress release and the remaining tensile strength of the
concrete as shown in Fig.  21. For comparison of the Hinton and Vecchio rules against
measurements the reader should check Section 6.1.10.

• In the work of Cervera tension-stiffening is connected to the fracture energy release rate
of concrete Ref. [4]:

σn= f t e
(−(ε1−εt )

α )

α=
(G f−

1
2

f tεt l c)
f t l c

(4.17)

where Gf is the facture energy of concrete which is adjustable by the user in kN/m unit
and  lc is the characteristic length set based on Ref.  [17],  lc=0.2 m. The effect of  Gf is
shown in Fig. 22.
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21. Figure - Decreasing tension stiffening rule with remaining tensile strength
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4.1.4.3 Reduced compression strength effect in case of lateral cracking

Tensile  strains  in  the  crack  direction  effectively  reduce  the  compressive  strength  in  the
transverse directions. For this effect the Eurocode defines in case of the strut and tie model a
strength reduction factor for compressed cracked concrete, see Ref. [18] as well:

σRd , max=0.6 ν ' f cd (4.18)

where ν' is the effectiveness factor.

In FEM-Design this factor is calculated dynamically during the simulation based on the actual
state of a material point. The factor shrinks the failure envelope in Fig. 16 proportionally. This
means that all parameters of the concrete regarding compression will be recalculated as Fig. 23
shows.

The value of the effectiveness factor is driven by the tension strain normal to the crack surface.
The exact relationship can be chosen in FEM-Design (curves are shown in Fig. 24):
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22. Figure - Fracture energy based tension stiffening rule
Gf parameter can be adjusted in [kN/m] unit
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23. Figure - Degradation compression properties of concrete material due to cracking 
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• Vecchio defined the effectiveness factor based on ε1 and εc2 Ref. [16]:

ν '=
1

(0.8+0.34ε1/εc2)
(4.19)

• In case of the Distributed Stress Field model Vecchio extended the above relationship
with the ε2 compressive strain Ref. [19]:

ν '=
1

(1+0.35(−ε1/ε2−0.28)0.8) (4.20)

This formula is plotted in Fig. 24 using a fixed ε2 = 0.001 strain value.

• Cervera defined a linear rule Ref. [4]:

ν '=1−k 2ε1/0.005 (4.21)

where k2 is a free parameter and set to 0.55 in Fig. 24.

• Based  on  the  modified  FIB  Model  Code  2010  recommendation  and  Ref.  [18] the
effectiveness factor can be given in a piecewise manner:

ν '=1 ; ε1≤
10
17

εc2

ν '=Aε1
2
+B ε1+C ;

10
17

εc2<ε1≤
2

325
εc2

ν '=
1.0

(1.2+55.0ε1)
;

2
325

εc2<ε1

(4.22)

where A,B and C are constants obtained by fitting a parabola.

In case of each option  ν'=0.3 is the minimum value. This can be seen in case of the Cervera
curve in Fig. 24.
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24. Figure - Fracture energy based tension stiffening rule
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4.1.4.4 Reduced transverse shear stiffness in case of cracking

However transverse shear is not involved in the plasticity model, cracking can have an effect on
the transverse shear. Similarly, as in case of the tension stiffening effect the existence of the
reinforcement and aggregate interlock (Fig.  25) cause shear transfer even in case of cracked
concrete, which can be gradually decreased as the total strains along the crack increase.

As transverse shear is calculated in an elastic way, this can be done by reducing the transverse
shear modulus of the material point. FEM-Design offers a linear rule for this kind of stiffness
reduction:

G13=G 23=β sG

β s=
ε1−2εm

εt−2εm

(4.23)

where βs is the reduction factor as Fig. 26 shows, εt is the strain at crack initiation and εm=0.002.

Just as in case of the effectiveness factor a small amount of transverse shear moduli is kept to
maintain numerical stability of the calculation with βmin, see Fig. 26 as well.
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25. Figure - Remaining transverse shear transfer due to aggregate interlock

26. Figure - Transverse-shear reduction rule for cracked concrete



Theory of Plastic Shells FEM-Design 23 

4.2 Reinforcement steel

4.2.1 General reinforcement steel behaviour

Reinforced concrete is a composite which in addition of concrete consists of steel reinforcement.
The reinforcement is comparatively thin, hence it is assumed that it is capable of transmitting
axial forces only. Other properties of reinforcement steel is the same as structural steel, therefore
data given in Section 3.1 is also valid here. As the reinforcement can bear axial forces only, a
uniaxial material model is sufficient.

Using this simplification a very economic model can be developed without losing the accuracy.
To consider steel in the LPSM element the reinforcements are added as separate layers into the
model. To show this Fig. 4 can be extended with steel layers. This can be seen in Fig. 27 which
shows a reinforced concrete shell accomplished by the LPSM element.

The  model  can  have  4  arbitrary  located  reinforcement  layers.  The  parameters  of  each
reinforcement,  like  the  reinforcement  ratio  and  steel  material  properties  can  be  determined
individually.  The change of the amount of the reinforcement inside the element can also be
handled as the input reinforcement ratio is given for the corner nodes, thus inside the element at
the integration points interpolation is used to obtain the correct amount of reinforcement.

Important property is the bond-slip relation between concrete and steel. In FEM-Design it is
assumed that  there  is  a  perfect  bond,  thus  the  reinforced concrete  can  be  modelled  as  one
composite shell element instead of using interface elements between steel and concrete which
would increase the calculation cost significantly.

The assumption of the perfect bond and the uniaxial load bearing of the reinforcements causes
that local effects like dowel and pull-out actions cannot be taken directly into consideration, but
the model mentioned in Section 4.1.4 are used to describe the interaction on macroscopic level.
As a result local effects cannot be evaluated but on structural level the behaviour is accurate.

4.2.2 Plasticity and yielding in reinforcement steel

For sake of simplicity the uniaxial perfectly plastic steel model is repeated here in Fig. 28. For
the uniaxial steel layers in each equilibrium iteration an elastic trial stress can be calculated
using the total steel strains:
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27. Figure - The LPSM element including the reinforcement layers
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εk=ε0+κ z s , k (4.24)

where z
s,k

 is the effective height of the kth steel layer measured from the reference plane (mid-

plane) of the shell. From this the strain in the reinforcement can be obtained as:

εs=εx , k cos2
(Θs , k)+ε y , k sin2

(Θs , k)+γxy , k cos (Θs ,k )sin(Θs , k ) (4.25)

where the  Θ
s,k

 angle is the angle of the steel layer in the local coordinate system. Using the

plastic strain of the reinforcement the trial stress in the reinforcement is given as:

σ s=E s(εs−εs
p
) (4.26)

where subscript  s denotes that values, are relating to the reinforcement. All of the quantities
above are calculated in the steel directions one-by-one. This trial stress can be checked against
the material rule shown in Fig. 28 and in case of need the return mapping, given in Section 1.4,
can be used to fulfil the material law.

After successful stress return the uniaxial stress has to be converted back to the element local
coordinate system:

σ s ,k=[
σ s cos2

(Θ s , k )

σ s sin2
(Θ s , k )

σ s cos (Θs ,k )sin(Θ s , k )
] (4.27)

and the contribution to the stress resultants can be obtained by using the specific area of the
reinforcement layer:

[ms , k

n s , k ]=[
σ s ,k as , k z s , k

σ s , k as ,k ] (4.28)

where a
s,k

 is the specific area of the reinforcement.

Based on the result of the plastic return mapping the ETs tangent modulus of the steel can be also
obtained which is related to the steel direction therefore it has to be rotated into the element
local system to obtain the material matrix:

D s , k
ep =T (3x3)

−1 [
ETs 0 0
0 0 0
0 0 0]T (3x3)

−T (4.29)

where T is an appropriate transformation matrix using the angle of the steel.
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28. Figure – Linear Elastic-Perfectly Plastic material law of steel
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Dep
s,k can be used to calculate the contribution to the element stiffness according to (2.13) and

Section 2.3.

4.2.3 Failure mode in reinforcing steel due to ultimate strain

Just as in case of structural steel shell fracture strain limit can be monitored in the reinforcement
layers. Calculation of equivalent strain is not necessary as εs in (4.25) can be directly compared
to εu.

In case of fracture just as in Section 3.3, it is assumed that the steel layers completely lose their
structural stiffness and the stress release is complete and immediate.

5 Remarks and some recommendations in the light of finite element
calculations

5.1 Material model options in case of Structural Steel

Material model of plastic structural steel shells are configurable in FEM-Design as follows:

• Plasticity options are available for any steel 'Plane Plate' or 'Plane Wall' by clicking the
'Plastic Analysis Data...' button as Fig. 29 shows

• Plasticity  can  be  enabled  or  disabled  for  any  element  distinctly  for  SLS  and  ULS
calculations. For this the 'Elasto-Plastic behaviour' has to be adjusted which is shown in
Fig. 30.
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29. Figure - Configuring plasticity for structural steel shells
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• If plasticity is enabled it  can be controlled whether the  εu is monitored as written in
Section  3.3 or not. This controls whether a material point is able to flow without any
limits  along  the  straight  plateau  in  Fig.  31 until  the  FE  solver  is  able  to  find  an
equilibrium configuration  on  structural  level,  which  means  no  plastic  mechanism is
formulated yet. If strain limit is enabled, reaching the limit value the material point is
“turned off”.

• εu is adjustable in the 'Param.' column given in %.

In FEM-Design plastic shell calculations the considered material model input by structural steel
in the different limit states can be seen in Fig. 32. Fig. 32 left side shows the uniaxial material
model for structural steel with the Eurocode notations in case of ultimate limit state. Fig.  32
right side shows the uniaxial material model for structural steel with Eurocode notations in case
of serviceability limit states. In the proper fy yield strength of structural steel material model the
nominal thickness of the shell is considered according to EN 1993-1-1 Table 3.1. The behaviour
is symmetric in tension and compression.
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30. Figure - Plasticity options for structural steel shells

31. Figure - Elastic-Perfectly Plastic material law of steel
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5.2 Material model options in case of Reinforced Concrete

Similarly, as in case of Structural Steel plasticity model for Concrete is also adjustable element
by 'Plane Plate' or  'Plane Wall'  element using the  'Plastic Analysis Data...' button as Fig.  33
shows. This get the user to all of the concrete plasticity options for the user as Fig. 34 shows.

Turning on the  'Elasto-Plastic behaviour'  several options become available, with the user is
able to control the material model, which uniaxial representation is shown in Fig. 35.
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33. Figure - Configuring plasticity for concrete shells

32. Figure – The structural steel material inputs in FEM-Design according to the different limit states
left: ultimate limit state, right: serviceability limit states
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Material options are influencing the stress-strain law as follows:

• Turning on 'Plastic hardening' causes that in the compression zone the stress strain law
will follow the solid curve in the compression zone in Fig.  35. In this case all of the
calculations are according to Section 1.3. If hardening is not used than the dashed-dotted
line is followed in the compression zone. Hardening has mainly an effect on the final
deformations of the structure and very minor effect on the ultimate load, therefore if only
the load bearing capacity is important than turning this option off calculation can be
made slightly faster. In case of plain concrete without any reinforcement, hardening is
turned off during the analysis automatically to improve numerical stability.

• The 'Crushing' option controls the damage model presented in Section  4.1.3. Enabling
this causing the damage of the material point by reaching εcu2, otherwise perfectly plastic
flow can continue until the evolution of a plastic mechanism, which causes the collapse
of  the  structure.  This  option  has  a  strong  influence  on  the  compression  failure  of
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34. Figure - Plasticity options for concrete shells

35. Figure - Uniaxial representation of the different concrete plastic material models
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concrete, therefore it is a very important parameter to capture the ultimate load of the
structure. The model for the equivalent strain can be selected in the  'Option' column
based on Section 4.1.3 and Eq. (4.8)-(4.11).

• Turning off the 'Tension strength in plastic flow rule' option will cause that the concrete
material point in the tension zone will follow the gray arrows using a perfectly plastic
behaviour and no tension strength at all. Using this option the user can remain on the
safe side of the load bearing capacity of the structure, but for an accurate deformation
calculation it is strongly advised to consider the tension strength of concrete. Moreover
the  consideration  of  the  tension  strength  improves  the  numerical  stability  of  the
calculation.

• If the 'Tension stiffening' rule is not considered after reaching ft the stress strain law will
follow the black arrows. At the onset of Microcracks concrete loses all of its strength and
rigidity. From this point stress in the material point releases fully and material model will
follow the gray arrows assuming a perfectly plastic flow. This model is adequate for
plain concrete and it is forced during the calculation if no reinforcement is applied for
the  element.  However  in  case  of  reinforced  concrete  the  consideration  of  a  proper
tension stiffening rule is strongly advised because it improves the deformation results of
the FE model and increases numerical stability. The tension stiffening models presented
in Section 4.1.4.2 can be selected in the 'Option' column and the rules can be adjusted
using the  'Param' column based on Fig.  19-22. If a tension stiffening rule is selected
material law will follow the solid black line in Fig. 35. To select an appropriate tension
stiffening rule the reader should check the verification examples in Section 6.1. The rule
of thumb for the selection of the tension stiffening rule is that Vecchio rule fits for shear
dominant load cases of panels whereas the other rules are serving good in case of other
loading situations. In the latter case the user should apply the rule for which the most
reliable parameters are available. The default parameters for the different options here
were  selected  according  to  the  indicated  references  in  Section  4.1.4.2.  As  it  was
mentioned the tensions stiffening rule mostly has an effect on the final deformations and
less influence on the load bearing capacity of the structure.

• The  'Reduced  compression  strength  in  case  of  lateral  cracking'  is  available  for
controlling the material model as written in Sections 4.1.4.3. The option is available to
make the cracking model more accurate, thus allowing the user to have better results
both in SLS and ULS calculations. In Reduced compression strength in case of lateral
cracking' option,  the  name  of  the  selectable  methods  in  FEM-Design  3D  structure
corresponds the name of the rules in Fig. 24 in the following way:

◦ Vecchio 1 means Vecchio MCFT according to Eq. (4.19).

◦ Vecchio 2 means Vecchio DST according to Eq. (4.20).

◦ Cervera means Cervera according to Eq. (4.21).

◦ Model Code 2010 means FIB according to Eq. (4.22).

• The  'Reduced  transverse  shear  in  case  of  lateral  cracking' (see  Fig.  26)  option  is
available to  make the cracking model more accurate,  thus allowing the user  to have
better results both in SLS and ULS calculations, see Section 4.1.4.4.

• 'Ultimate  strain  in  rebars'  is  an  option  related  to  reinforcement  steel.  For  the
reinforcement basic parameters can be set on the 'Concrete' design tab of FEM-Design as
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Fig.  36 shows.  The  reinforcement  set  here  will  be  transferred  into  the  plastic  finite
element calculation converting the steel layers into equivalent steel based on the settings
done  in  the  'Calculation  parameters' dialogue.  The  yield  stress,  specific  area  and
modulus of elasticity will be transferred to the plastic shell calculation based on these
settings. The only thing which is adjustable in the plasticity dialogue, shown in Fig. 34, is
the  'Ultimate  strain  in  rebars'.  With  this  option  the  user  is  able  to  control  the  steel
material  model  on  a  similar  manner  as  in  case  of  structural  steel  in  Section  5.1,  by
enabling the damage model for the reinforcement layers if the strain in the reinforcement
reaches the preset value of  εu.Considering the fracture of steel allows the user a more
accurate load bearing capacity in FE calculation.

In FEM-Design plastic shell calculations the considered material model input by concrete in the
different limit states can be seen in Fig. 37. Fig. 37 left side shows the uniaxial material model
for concrete with the Eurocode notations in case of ultimate limit state. Fig. 37 right side shows
the uniaxial material model for concrete with Eurocode notations in case of serviceability limit
states. In the proper material models of concrete the creep coefficients and partial factors are
considered according to EN 1992-1-1, see Fig. 37.

In FEM-Design plastic shell calculations the considered material model input by reinforcement
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36. Figure - Reinforcement steel setup for plastic shell

37. Figure - The concrete material inputs in FEM-Design according to the different limit states
left: ultimate limit state, right: serviceability limit states
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steel in the different limit states can be seen in Fig.  38. Fig.  38 left side shows the uniaxial
material model for reinforcement steel with the Eurocode notations in case of ultimate limit
state. Fig. 38 right side shows the uniaxial material model for reinforcement steel with Eurocode
notations in case of serviceability limit states. In the proper material models of reinforcement
steel the partial factors are considered according to EN 1992-1-1, see Fig. 38.

5.3 Through thickness resolution of the LPSM elements

As it was written in Section 2.1 the LPSM elements can have arbitrary number of layers. This
can be globally controlled by the user to allow to find a good compromise between accuracy and
calculation cost of the simulation.

Fig.  39 shows the  'Calculation option' dialogue of the load combination calculation. Here the
number of layers in an LPSM element can be adjusted by specifying a number in the 'Number of
layers in elasto-plastic shells' option.

44

38. Figure - The reinforcement steel material inputs in FEM-Design according to the different limit states
left: ultimate limit state, right: serviceability limit states
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The default value is 10 which normally gives accurate results. In special cases when the model
can  suffer  membrane  loading  only  the  user  may  set  this  number  to  1  to  achieve  faster
calculation,  but in this  case the user has to be sure that the plastic elements are completely
bending free.

5.4 Convergence parameters of the calculation

In the 'Calculation options' dialogue in Fig. 39 several parameters can be adjusted to influence
the convergence of a plastic calculation:

• The 'Default Load step...' sets the initial amount of the total load which will be applied
on the  structure  during  a  load  increment.  With  a  good choice  of  this  parameter  the
calculation speed can be dramatically improved. Too small load steps may cause a lot of
unnecessary iterations in the elastic domain of the structure. On the contrary too many
may cause a lot of failed iterations when the load step has to be adjusted and the current
iteration has to be repeated.

• The 'Minimal Load step' defines the smallest amount of the total load with the solver is
allowed to try to accomplish a load increment iteration.

• The  'Keep reduced loadstep...' checkbox controls  the solver  behaviour  in  case of an
iteration is successful after a failed one. If the checkbox is active then the solver will
keep the load increment of the last successful iteration. This is the advised option in case
of an LPSM calculation. If it is turned out the solver will try the next iteration using the
default load step. This latter mode is good if the structure has switch like non-linearities,
like an uplifting connector etc. In this case after the status change of the element the
structure may keep its elastic, thus the bigger loadstep can be convergent.
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39. Figure - Reinforcement steel setup for plastic shell
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• With the  'Global tolerance' value the allowed value of the residual force discussed in
Section  1.1 can be controlled.  Increasing the tolerance may cause faster convergence
with the price of a less accurate simulation result.

• The  'Maximum  number  of  iterations' set  the  internal  equilibrium  iterations  can  be
controlled  with  the  solver  tries  to  fulfil  the  'Global  tolerance' criteria.  In  case  of  a
complex plastic shell structure this value is advised to set to a relative high value. In case
if the ultimate load has to be captured very accurately the increase of this number is
advised e.g. to a value of 200, and in parallel the 'Global tolerance' should be kept on a
low value like one thousandths to avoid the accumulation of unbalanced forces during
the equilibrium iterations.

6 Reinforced concrete application of the plastic shell theory

6.1 Verification examples

6.1.1 Normally RC beam under pure bending compared with analytical calculation

In this example we compare the FEM-Design calculation result with “analytical” solution based
on Ref. [20] according to general strength of material calculation regarding reinforced concrete.
This example in Ref. [20] shows the pure bending moment (M) vs. curvature (κ) diagrams of a
rectangle cross-section (300x450 mm) in normally reinforced case (As=1257 mm2, 4ϕ20 on the
tensioned side). The normally reinforced condition means that the failure occurs in the section
with the crushing of the concrete at the extreme fibre while the reinforcement is in yielding
condition.  In  Ref.  [20] linear  elastic  perfectly  plastic  behaviour  was  assumed  for  the
reinforcement  (in  tension)  and  for  the  concrete  (in  compression).  In  tension  the  concrete
material was considered linear elastic until the extreme fibre reached the tension strength, but
after tensile cracking the tension stiffening was neglected thus Ref.  [20] shows the M-κ curve
for this loading and reinforcement condition.

Fig.  40 shows the FEM-Design model with the mesh, fixed boundary condition and the line
constant moment at the end of a cantilever. With these settings the cantilever is mostly in pure
bending condition.

The FEM-Design plastic data settings can be seen in Fig.  41 in case of tension stiffening and
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40. Figure - The FEM-Design model with the mesh and the applied constant moment
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concrete hardening considerations.

Fig. 42 shows the moment-curvature diagrams about the benchmark result and the FEM-Design
results.  To  follow the  “analytical”  result  more  precisely,  during  the  non-linear  plastic  shell
calculation  1% load  step  was  adjusted  with  10  concrete  shell  core  layers  and  one  bottom
reinforcement layer. In FEM-Design six different cases were considered:

– Tension stiffening (option: Hinton, parameter: 0.5) without concrete hardening

– Tension stiffening (option: Hinton, parameter: 0.5) with concrete hardening

– Without tension stiffening, without concrete hardening

– Without tension stiffening, with concrete hardening

– Without tension strength, without concrete hardening

– Without tension strength, with concrete hardening

Due  to  the  normally  reinforced  section  the  failure  occurs  with  concrete  crushing  while
reinforcement reaches yield stress.

The benchmark result gives the following ultimate moment, see Fig 42.

M Rd=200 kN

FEM-Design ultimate bending moments are as follows with the six different data sets above:

M Rd FD 1=204 kN ; M Rd FD2=201kN ; M Rd FD 3=201kN ;

M Rd FD 4=189kN ; M Rd FD 5=198 kN ; M Rd FD 5=189 kN .

According to Fig. 42 we can say that the strains and the ultimate moment capacities are in good
agreement  with  the  “analytical”  result.  Note  that  in  the  benchmark  result  the  linear  elastic
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41. Figure - FEM-Design plastic data set
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perfectly plastic material model was considered in concrete, therefore the FEM-Design results in
case of hardening of concrete show a bit softer behaviour with a bit smaller ultimate moment
capacities. In every analysed case the non-linear solutions stopped with the concrete crushing
while the reinforcements were in yielding condition which means that the finite element model
gave back the normally reinforced situation. 
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42. Figure - Bending moment vs. curvature diagram in case of normally reinforced section
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6.1.2 Weakly RC beam under pure bending compared with analytical calculation

In this example we compare the FEM-Design calculation result with “analytical” solution based
on Ref. [20] according to general strength of material calculation regarding reinforced concrete.
This example in Ref [20] shows the pure bending moment (M) vs. curvature (κ) diagrams of a
rectangle cross-section (300x450 mm) in weakly reinforced case (As=226 mm2,  2ϕ12 on the
tensioned side). The weakly reinforced condition means that the failure occurs in the section
with the reinforcement fracture while the concrete is far from its crushing strain (approximately
elastic). This is the same reference which was in the previous example, thus all assumptions in
the material models are the same as in the previous example. 

The FEM-Design model geometry and loading condition were the same compared with the
previous example. Only the applied reinforcement was different (A

s
=226 mm2, 2ϕ12).

Fig.  40 shows the FEM-Design model with the mesh, fixed boundary condition and the line
constant moment at the end of the cantilever. With these settings the cantilever is mostly in pure
bending condition.

The FEM-Design plastic data settings can be seen in Fig.  43 in case of tension stiffening and
concrete hardening considerations.

Fig. 44 shows the moment-curvature diagrams about the benchmark result and the FEM-Design
results.  To  follow the  “analytical”  result  more  precisely,  during  the  non-linear  plastic  shell
calculation  1% load  step  was  adjusted  with  10  concrete  shell  core  layers  and  one  bottom
reinforcement layer. In FEM-Design six different cases were considered:

– Tension stiffening (option: Hinton, parameter: 0.3) without concrete hardening

– Tension stiffening (option: Hinton, parameter: 0.3) with concrete hardening
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43. Figure - FEM-Design plastic data set
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– Without tension stiffening, without concrete hardening

– Without tension stiffening, with concrete hardening

– Without tension strength, without concrete hardening

– Without tension strength, with concrete hardening

Due to the weakly reinforced section the failure occurs with reinforcement fracture.

The benchmark result gives the following ultimate moment see Fig. 44:

M Rd=43kN

FEM-Design ultimate bending moments are as follows with the six different data sets above:

M Rd FD 1=45kN ; M Rd FD2=44 kN ; M Rd FD3=42kN ;

M Rd FD 4=41kN ; M Rd FD5=45kN ; M Rd FD5=44 kN .

According to Fig. 44 we can say that the strains and the ultimate moment capacities are in good
agreement with the “analytical” result. Note that in the benchmark result the section is weakly
reinforced,  therefore  the  FEM-Design  results  in  case  of  hardening  of  concrete  don't  show
considerable differences compared with non-hardening cases because the concrete was in linear
elastic condition at  failure. In every analysed case the non-linear solutions stopped with the
reinforcement fracture while the concrete was almost linear elastic which means that the finite
element model gave back the weakly reinforced situation. 
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6.1.3 Over RC beam under pure bending compared with analytical calculation

In this example we compare the FEM-Design calculation result with “analytical” solution based
on Ref. [20] according to general strength of material calculation regarding reinforced concrete.
This example in Ref [20] shows the pure bending moment (M) vs. curvature (κ) diagrams of a
rectangle  cross-section  (300x450 mm)  in  over  reinforced case  (A

s
=1885 mm2,  6ϕ20 on the

tensioned side). The over reinforced condition means that the failure occurs in the section with
the concrete crushing while the reinforcement is in elastic condition. This is the same reference
which was in the previous example, thus all assumptions in the material models are the same as
in the previous example. 

The FEM-Design model geometry and loading condition were the same compared with the
previous example. Only the applied reinforcement was different (A

s
=1885 mm2, 6ϕ20).

Fig.  40 shows the FEM-Design model with the mesh, fixed boundary condition and the line
constant moment at the end of the cantilever. With these settings the cantilever is mostly in pure
bending condition.
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44. Figure - Bending moment vs. curvature diagram in case of weakly reinforced section

0 0,01 0,02 0,03 0,04 0,05 0,06
0

5

10

15

20

25

30

35

40

45

50

Benchmark

FEM-Design with tension st iffening Hinton 0,3 / without  concrete hardening

FEM-Design with tension st iffening Hinton 0,3 / with concrete hardening

FEM-Design without  tension st iffening / without  concrete hardening

FEM-Design without  tension st iffening / with concrete hardening

FEM-Design without  tension strength / without  concrete hardening

FEM-Design without  tension strength / with concrete hardening

Curvature [1/m]

M
om

en
t 

[k
N

m
]



Theory of Plastic Shells FEM-Design 23 

The FEM-Design plastic data settings can be seen in Fig.  45 in case of tension stiffening and
concrete hardening considerations.

Fig. 46 shows the moment-curvature diagrams about the benchmark result and the FEM-Design
results.  To  follow the  “analytical”  result  more  precisely,  during  the  non-linear  plastic  shell
calculation  1% load  step  was  adjusted  with  10  concrete  shell  core  layers  and  one  bottom
reinforcement layer. In FEM-Design six different cases were considered:

– Tension stiffening (option: Hinton, parameter: 0.5) without concrete hardening

– Tension stiffening (option: Hinton, parameter: 0.5) with concrete hardening

– Without tension stiffening, without concrete hardening

– Without tension stiffening, with concrete hardening

– Without tension strength, without concrete hardening

– Without tension strength, with concrete hardening

Due to the over reinforced section the failure occurs with concrete crushing.

The benchmark result gives the following ultimate moment:

M Rd=263kN

FEM-Design ultimate bending moments are as follows with the six different data sets above:

M Rd FD 1=252kN ; M Rd FD 2=228kN ; M Rd FD 3=255kN ;

M Rd FD 4=228kN ; M Rd FD 5=252 kN ; M Rd FD 5=243 kN .

According to Fig. 46 we can say that the strains and the ultimate moment capacities are in good
agreement  with  the  “analytical”  result.  Note  that  in  the  benchmark  result  the  linear  elastic

52

45. Figure - FEM-Design plastic data set
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perfectly plastic material model was considered in concrete, therefore the FEM-Design results in
case of hardening of concrete show a bit softer behaviour with a bit smaller ultimate moment
capacities. In every analysed case the non-linear solutions stopped by concrete crushing while
the reinforcements were in linear elastic condition which means that the finite element model
gave back the over reinforced situation. 
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46. Figure - Bending moment vs. curvature diagram in case of over reinforced section
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6.1.4 Simply supported RC beams compared with experimental data

Section and material properties Beam A Beam B

Height [mm] h=561.34 h=556.26

Width [mm] b=307.34 b=228.60

Effective depth [mm] d=466.09 d=461.01

Effective depth [mm] d'=50.8 d'=50.8

Reinf. bottom [mm2] As=3910 As=3257

Reinf. top [mm2] As'=257 As'=257

Span length [m] L=6.4 L=6.4

Concrete Young's mod. [GPa] Ec=29.80 Ec=31.97

Poisson's ratio [-] ν=0.15 ν=0.15

Ultimate comp. strength [MPa] fc=35.0 fc=38.7

Ultimate tens. strength [MPa] ft=4.3 ft=4.2

Ultimate yield strain [-] εc2=0.0020 εc2=0.0020

Ultimate comp. strain [-] εc3=0.0030 εc3=0.0025

Reinf. steel Young's mod. bottom [GPa] Es=205.3 Es=205.3

Yield stress bottom [MPa] fy=552 fy=552

Reinf. steel Young's mod. top [GPa] Es'=201.2 Es'=201.2

Yield stress top [MPa] fy'=345.2 fy'=345.2

In this verification example two simply supported RC beams will be analysed. The experimental
test layouts and results were taken from Refs. [21] and [3]. In FEM-Design the structures were
modelled with shell elements and line loads. The static structural system and the applied load
can be seen in Fig. 47 with the different analysed cross-sections. The geometrical and material
data are in the table above.
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47. Figure - Static structural system, cross-section A and B
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The FEM-design model with the finite element mesh and the applied line load can be seen in the
following figure (Fig. 48):

In FEM-design plastic shell analysis the applied layer number was nlay = 10. The adjusted plastic
shell data were the following (Fig. 49):

The following load displacement diagram shows the result of the test experiment (beam A) with
the applied load and mid-span deflections. In the same diagram the FEM-Design result is also
available. 

According to the test results, the failure occurred on the compressed side of the beam at mid-
span with concrete crushing while the tension reinforcement bars on the bottom side remained
elastic and the compression reinforcement on the top side became plastic. 

The FEM-Design result gives the same failure behaviour and the load vs. mid-span deflection
curve  is  in  good agreement  with  the  experimental  results  (see  Fig.  50).  The ultimate  load-
bearing  capacity  and  the  mid-span  deflection  before  failure  are  almost  match  each  other
comparing the numerical FEM-Design calculation with the experimental test result (see Fig. 51
as well).

The ultimate loads,  mid-span deflections  and ultimate bending moments  at  mid-span are as
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48. Figure - FEM-Design model with the applied mesh

49. Figure - FEM-Design plastic data set
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follows:

F test=468.1 kN , d test=0.0355m , M Rd test=749kNm

F FD=465kN , d FD=0.03338m , M Rd FD=734kNm

The differences between the results are less than 5 %.

The following load displacement diagram shows the result of the test experiment (beam B, Fig.
52) according to the applied load and mid-span deflections.  In the same diagram the FEM-
Design result is also available. 
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50. Figure - Load-deflection curves in case of beam A

0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040
0

50

100

150

200

250

300

350

400

450

500

Test data beam A 
FEM-Design result

Mid-span deflection [m]

Lo
ad

 [k
N

]

51. Figure - Plastic shell conditions in case of beam A
a) concrete bottom layer, b) concrete top layer, c) bottom reinforcement, d) top reinforcement



Theory of Plastic Shells FEM-Design 23 

According to the test results, the failure occurred on the compressed side of the beam at mid-
span with concrete crushing while the reinforcement bars on the bottom and top sides remained
elastic (see Fig. 53).

The FEM-Design result gives the same failure behaviour and the load vs. mid-span deflection
curve is in good agreement with the experimental results (see Fig 52). The ultimate load-bearing
capacity and the mid-span deflection before failure are almost matching to each other comparing
the numerical FEM-Design calculation with the experimental test result.

The ultimate loads,  mid-span deflections  and ultimate bending moments  at  mid-span are as
follows:

F test=353.4 kN , d test=0.033m , M Rd test=565kNm

F FD=344kN , d FD=0.029912m , M Rd FD=550 kNm

The difference between the results are less than 10 %.
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52. Figure - Load-deflection curves in case of beam B
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53. Figure - Plastic shell conditions in case of beam B
a) concrete bottom layer, b) concrete top layer, c) bottom reinforcement, d) top reinforcement
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6.1.5 Clamped-clamped beam with uniform distributed load

Section and material properties

Height [mm] h=200

Width [mm] b=100

Effective depth [mm] d=170

Effective depth [mm] d'=30

Reinf. bottom [mm2/m] as=2262 (ϕ12/50)

Reinf. top [mm2/m] as'=2262 (ϕ12/50)

Span length [m] L=5

Concrete Young's mod. [GPa] Ec=34

Poisson's ratio [-] ν=0.0

Ultimate comp. strength [MPa] fc=35

Ultimate yield strain [-] εc2=0.002

Ultimate comp. strain [-] εcu=0.0035

Reinf. steel Young's mod. bottom [GPa] Es=210

Yield stress bottom [MPa] fy=500

Ultimate strain of reinforcements [-] εsu=0.05

In this example a beam with clamped supports subjected to uniformly distributed load will be 
analysed. The longitudinal elongation in the beam is free, see Fig. 54.

The geometry and material properties of the beam with rectangle cross-section can be seen in
the above table. The reinforcement is symmetric and applied in the longitudinal direction. In this
example Ref.  [22] was considered as a benchmark for this case. According to the mentioned
reference the ultimate intensity of the distributed load is around:

pu=106 kN /m ,

which is the ultimate load according to the plastic-hinge theory.

Fig. 55 shows the FEM-Design model with the applied load and mesh.

In FEM-Design four different calculations were performed using the settings according to Fig.
56. In FEM-Design 10 concrete layers were considered as the concrete core in the laminated
plastic shell model, plus two reinforcement layers (bottom, top).
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54. Figure - The static structure with the load
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In Fig. 57 the load-mid deflection curves can be seen. In Ref [22] the solution was preformed
using limit analysis theory in which the strain check is just a post processing. The black asterisk
in Fig.  57 shows the post-processing strain limit  checks in reinforcement steel according to
different methods (nodal/averaged). Here you can see also the FEM-Design results. If no strain
limit was considered the ultimate load according to FEM-Design was:

pu FD=110 kN /m

If the strain limits were considered (concrete crushing and ultimate strain in rebar) the ultimate
load level was:

pu FD with strain limits=92kN /m

Note that in FEM-Design the concrete crushing was the relevant failure mode. In Ref. [22] only
the reinforcement strain limit was considered, see the black asterisks in Fig. 57.

Thus,  we can  say that  the  FEM-Design  result  is  very close  to  the  theoretical  plastic-hinge
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56. Figure – FEM-Design plastic settings about the four different cases

55. Figure – FEM-Design model about the clamped-clamped beam
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solution regardless the strain limits. If the strain limit is considered, the FEM-Design result is
close to the benchmark result but a bit lower, but do not forget that in the benchmark only the
reinforcement steel strain limit was considered.

In case of concrete hardening and strain limits consideration in FEM-Design calculation Fig. 58
shows the bottom/top concrete,  bottom/top reinforcement plastic conditions and the bending
moment diagram at ultimate load level.

According to Fig.  58 it can be concluded that the ultimate bending moment of the section is
around 176 kNm/m, because the clamped ends reached that limit. The mid-section due to the
strain limits doesn't reach this ultimate bending moment (see Fig. 58 as well). If the strain limits
were neglected in FEM-Design the mid-section bending moment was closer to this ultimate
bending moment as well (see Fig. 59).
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57. Figure – Load-deflection curves
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6.1.6 Two span RC beam compared with experimental data

Section and material properties

Height [mm] h=80

Width [mm] b=60

Effective depth [mm] d=73

Effective depth [mm] d'=7

Reinf. bottom [mm2] As=50.26

Reinf. top [mm2] As'=50.26

Span length [m] L=0.84

Concrete Young's mod. [GPa] Ec=16.66

Poisson's ratio [-] ν=0.0

Ultimate comp. strength [MPa] fc=32.0

Ultimate tens. strength [MPa] ft=3.2

Ultimate yield strain [-] εc2=0.0027

Ultimate comp. strain [-] εcu=0.004

Reinf. steel Young's mod. bottom [GPa] Es=196

Yield stress bottom [MPa] fy=574

Reinf. steel Young's mod. top [GPa] Es'=196

Yield stress top [MPa] fy'=574

The statically indeterminate structure was experimentally tested by Ref.  [23] and reported in
Ref.  [24] and [2]. In contrast with the previous example this beam exhibits a large non-linear
response with extensive cracking and yielding of concrete before collapse occurs. Fig.  60 and
the  table  above shows the static  structural  system and the  section data  of  the  experimental
layout.

61

59. Figure - Bending moment diagram [kNm/m] without strain limits



Theory of Plastic Shells FEM-Design 23 

In FEM-Design the beam was modelled with shell element according to Fig.  61. The plastic
shell calculation data can be seen in Fig. 62. The applied layer number was nlay = 10.

The following load displacement diagram shows the result of the test  experiment (two span
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60. Figure - Static structural system, loads, cross-section
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61. Figure - FEM-Design model with the applied mesh

62. Figure - FEM-Design plastic data set
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beam). FEM-Design result is also available in the same figure. 

FEM-Design load-displacement curve is in good agreement with the experimental results (see
Fig. 63). The ultimate load-bearing capacity is a bit lower compared to the test result.

In the following calculations we assume the first “yielding” load level, where the middle support
section  reach  the  ultimate  moment  capacity  of  the  RC section.  After  that  according  to  the
plastic-hinge theory the final ultimate load-bearing capacity will be calculated.

According to the test result the ultimate load-bearing capacity was:

P test=31.9 kN .

According to the given input data the RC section ultimate moment capacity can be assumed
according to general strength of material approximations as:

M Rd analytical=1.92 kNm .

The first  “yield”  where  one section  reaches  this  theoretical  moment capacity occurs  on the
following load level based on the analytical ultimate moment capacity value:

P first yield analytical=
32
3

M Rd analytical

L
=

32
3

1.92
0.84

=24.4 kN

According to the plastic hinge solution if the ultimate moment capacity of the section is given:

P plastic hinge analytical=12
M Rd analytical

L
=12

1.92
0.84

=27.4kN

The numerical results based on FEM-Design are as follows:

PFD fine
=28 kN , M Rd FD fine

+ =1.91 kNm , M Rd FD fine

- =1.98 kNm

PFD standard
=29 kN , M Rd FDstandard

+
=1.94 kNm , M Rd FDstandard

-
=1.95 kNm
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63. Figure - Load-maximum deflection curves in case of two span beam
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In FEM-Design the standard and the fine element group were also used for the two different
analysis. The ultimate load-bearing capacity is a bit lower compared with the test result, but the
ultimate positive and negative moment at the final converged load level are in good agreement
with the analytical moment capacity. In this case the theoretical plastic hinge calculation result
almost match the numerical FEM-Design result, but this is not true in all cases, it depends on the
structure and applied loads as well in general.

According  to  the  test  results,  collapse  occurs  by  concrete  crushing  at  mid-span  and  mid-
supported sections after excessive deformation of the tensile reinforcement. 

Fig. 64 shows the non-linear conditions of the RC beam based on the FEM-Design plastic shell
analysis. In the bottom concrete layer above the mid-support the concrete is in plastic condition
as expected and also in the top concrete layer under the applied loads as well. At the ultimate
load level the reinforcements are in plastic (yielding) condition. In the bottom reinforcement at
mid-span and in the top reinforcement at the mid-support (see Fig. 64).

64

64. Figure - Plastic shell conditions in case of two span beam
a) concrete bottom layer, b) concrete top layer, c) bottom reinforcement, d) top reinforcement
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6.1.7 Corner supported square slab with different reinforcement ratios compared with 
experimental data

Section and material properties

Thickness [mm] h=65

Slab length [mm] L=1170

Effective depth [mm] d=56

Effective depth [mm] d'=9

S1 Reinf. bottom x direction [mm2/m] as=397

S1 Reinf. top x direction [mm2/m] as'=193

S2 Reinf. bottom x direction [mm2/m] as=519

S2 Reinf. top x direction [mm2/m] as'=253

S3 Reinf. bottom x direction [mm2/m] as=582

S3 Reinf. top x direction [mm2/m] as'=283

S1 reinforcement in y direction ρx/ρy = 1.00

S2 reinforcement in y direction ρx/ρy = 1.89

S3 reinforcement in y direction ρx/ρy = 2.75

Concrete Young's mod. [GPa] Ec=16.40

Poisson's ratio [-] ν=0.15

Ultimate comp. strength [MPa] fc=43.0

Ultimate tens. strength [MPa] ft=3.0

Ultimate comp. strain [-] εcu=0.0035

Reinf. steel Young's mod. [GPa] Es=201

Yield stress [MPa] fy=600

Ultimate strain [-] εsu=0.025

In this example a corner supported square slab with a point load at the centre will be analysed.
In the three different (S1, S2, S3) cases the reinforcements are different (see. Fig. 65 and 66 and
the table  above). The example was taken from Ref.  [25] and  [3].  In the first  reference the
experimental data can be find. In the other reference a numerical calculation result can be found.
FEM-Design results will be compared both experimental, numerical and analytical (yield line)
results as well. The input table contains all of the necessary information about the geometry,
material properties and reinforcements based on the references.
Fig. 67 shows the FEM-Design model with the applied mesh (average mesh size = 0.07m) and
loads. The load was considered as distributed load on a 100/100mm square surface at the centre
of the slab. In FEM-Design all of the plastic reinforced concrete shell options (except concrete
hardening) were considered, see Fig. 68.

65
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First, the pure ultimate moment capacities of the slabs will be calculated to assume the ultimate
loads based on yield line theory. During the hand calculation of the ultimate moment capacities
rectangle concrete and linear elastic perfectly plastic reinforcement steel material model will be
used.

Due to the symmetric reinforcement in case of Sl slab the x and y directional moment capacities
are the same, which one will be the basic input to the yield line theory calculation. In S2 and S3
slabs, the weaker ultimate moment capacities will be in the y direction. 

S1 slab:
If the reinforcement is in elastic condition the stress in the compressed side can be assumed as:

σ s=
E s⋅ε cu⋅d '

1.25 xc

−E s⋅ε cu=562.8
d '
xc

−703.5[MPa ]

Equilibrium equations are as follows:

xc⋅f c−(562.8
d '
xc

−703.5)a s '= f s⋅as ;

mRd=(562.8
d '
xc

−703.5)as '⋅(d '−
xc

2
)+ f s as(d−

xc

2
)

The solution of the above equations:
mRd=m x ' Rd=m y' Rd=12.76 kNm /m , xc=6.106mm , σ s=600MPa , σ s '=126MPa

(top and bottom reinforcements are in tension, because the compressed zone is small)

The ultimate moment capacity according to the yield line theory assuming the same ultimate 
moment capacities in x and y directions:

P yield line⋅edisp=2 L mRd
2
L

edisp ; P yield line=4 mRd=51.04 kN

With the same calculation assumptions in S2 and S3 slabs the moment capacities and the 
ultimate load levels according to the yield line theory are as follows:

S2 slabs:

m y ' Rd=9.13kNm /m , xc=4.88mm , σ s=600MPa , σ s '=334MPa
(top and bottom reinforcements are in tension, because the compressed zone is small)
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65. Figure - Schematic drawing about the reinforcements in x or y directions, 
the effective depth assumed equal in both directions
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P yield line edisp=L m yRd
4
L

edisp ; P yield line=4 m yRd=36.52 kN

S3 slabs:

m y ' Rd=7.207 kNm /m , xc=4.1735mm , σ s=600 MPa , σ s '=510MPa
(top and bottom reinforcements are in tension, because the compressed zone is small)

P yield line edisp=L m yRd
4
L

edisp ; P yield line=4 m yRd=28.83kN
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66. Figure - Corner supported slab with the different reinforcement ratios and dimensions
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67. Figure - FEM-Design model of the corner supported slab with the applied mesh and loads
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Figure  69 shows  the  load  vs.  centre  point  deflections  curves  based  on  experimental  and
benchmark numerical data. This figure also shows the FEM-Design results and the yield line
solutions as well.
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69. Figure - Load-deflection curves from the indicated references and FEM-Design plus the yield line
solutions for the slabs
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68. Figure - FEM-Design plastic data set
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Here you can see the ultimate load levels for the three different slabs (S1,S2,S3) based on the
experimental,  independent  numerical  and FEM-Design results.  The yield  line  solutions  also
indicated here:

Experimental ultimate load levels:

PS1 test=61kN , PS2 test=43kN , PS3 test=34 kN

Numerical benchmark ultimate load levels:

PS1 numerical Hinton=61kN , PS2 numerical Hinton=43 kN , PS3 numerical Hinton=34 kN

Yield line solution ultimate load levels:

PS1 yield line=51 kN , PS2 yield line=37kN , PS3 yield line=29 kN

FEM-Design ultimate load levels:

PS1 FD=59kN , PS2 FD=42 kN , PS3 FD=33kN

We can say that FEM-Design results are in good agreement with the experimental test results
and the independent numerical results as well. The yield line solutions here are always below
the  numerically  calculated/experimental  ultimate  loads.  The  reason  in  this  case  is  that  the
ultimate  bending  moments  by  the  yield  line  solutions  are  only  approximations  and  in  the
numerical calculations (and on the experimental tests) the biaxial behaviour of the concrete was
also considered.

The above comparisons are related only the load levels and the centre point deflections. In the
mentioned references e.g. in the experimental tests the deflections along the symmetric axes and
based on strain gauges data the bending moments along the symmetric axes at specific load
levels were also reported.

69

70. Figure - Deflections of S1 and S3 slabs at Load level = 27.5kN along x-axis
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Fig.  70 and  71 show the deflections in S1 and S3 slabs along the x and y symmetric axes at
27.5kN load level. These figures also indicate, how the elastic FE calculation result look like
based on a pure linear elastic material slab without reinforcement. These results are exactly the
same in both cases because they neglect the reinforcement ratios.

We can say that the deflections are in good agreement with the FEM-Design results, and also
that the non-linear effect has great effect on the deflections compared with linear elastic case.

It is important to note that in S1 the deflections are almost the same along x and y axis due to
the same reinforcements in x and y directions. In case of S3 slab the deflections greater along x
axis because the reinforcement in y direction is weaker. 

Fig. 72-74 show the My bending moments along x and y axes in S1 and S3 slabs at specific load
levels  based on experimental  data  (strain gauge approximation)  and FEM-Design numerical
results. We can say that the distribution of the bending moments in FEM-Design are in good
agreement with the experimental results. Some discrepancy can be seen but it comes from the
FE idealization and the approximation from strain gauge calculation. 

Fig.  75 shows the plastic conditions of the bottom and top concrete layers at the integration
points  in  S1  slab  from  FEM-Design.  The  top  layer  is  almost  fully  elastic  because  the
experimental data about the concrete material contained only very small perfectly plastic part
prior crushing. Fig. 76 shows the plastic conditions of the reinforcements. The results coincide
with the yield line solution assumptions. Fig. 77 shows the section results about mx and my in S1
slab at ultimate load level.

Fig. 78 shows the plastic conditions of the bottom and the y directional reinforcement layer at
the integration points in S3 slab from FEM-Design. The plastic results of the reinforcements
coincide with the yield line solution assumptions. Fig. 79 shows the section results about mx and
my in S3 slab at ultimate load level. Fig. 80 shows the unbalanced moments in S3 slab at first
unstable load level. This result also returned the assumed yield line at failure.
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71. Figure - Deflections of S1 and S3 slabs at Load level = 27.5kN along y-axis
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72. Figure - My bending moment in S3 slab at Load level = 32.5kN along x and y axes
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73. Figure - My bending moment in S1 slab at Load level 20 and 40kN along x axis
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74. Figure - My bending moment in S3 slab at Load level 10 and 30kN along x axis
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75. Figure - The bottom and top concrete layer plastic conditions in S1 slab at ultimate load level
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple),

Crushing/Fracture (blue)

76. Figure - The bottom x and y directional reinforcements plastic conditions in S1 slab at ultimate
load level

Elastic (yellow), Plastic (red)

77. Figure - Section results about mx and my bending moments [kNm/m] in S1 slab at ultimate load level
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78. Figure - The bottom concrete and y direction reinforcement layer plastic conditions in S3 slab at ultimate
load level

Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)

79. Figure - Section results about mx and my bending moments [kNm/m] in S3 slab at ultimate load
level
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Fig.  81 shows the FEM-Design results with and without the consideration of tension strength
(and tension stiffening) in the concrete material model. The ultimate load levels without tension
strength are almost equal to the tension stiffening case in all the three slabs.

Fig. 82 shows the first unstable unbalanced moment result in S1 slab without tension strength in
concrete.  The pattern of the unbalanced moments coincide with the yield line theory failure
pattern.
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80. Figure - The unbalanced moments in S3 slab at first unstable result after ultimate load

81. Figure - Load-deflection curves based on FEM-Design with tension strength (and tension
stiffening) and without tension strength in concrete
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Fig. 83 shows the plastic state of x and y directional reinforcements in S1 slab without tension
strength in concrete calculation. The pattern of the yield lines match with the yield line theory
failure pattern as well.

75

82. Figure - The unbalanced moments in S1 slab at first unstable result after ultimate load

83. Figure - The bottom x and y directional reinforcements plastic conditions in S1 slab at ultimate
load level without tension strength in concrete material model calculation

Elastic (yellow), Plastic (red)
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6.1.8 Simply supported square plate compared with experimental and analytical data

Section and material properties

Thickness [mm] h=51

Slab length [mm] L=1980 (effective length: 1830)

Effective depth [mm] dx=43.8

Effective depth [mm] dy=39.04

S1 Reinf. bottom x direction [mm2/m] asx=235

S1 Reinf. bottom y direction [mm2/m] asy=281

S6 Reinf. bottom x direction [mm2/m] asxdiag=201

S6 Reinf. bottom y direction [mm2/m] asydiag=235

S1 Concrete Young's mod. [GPa] Ec=32.42

S1 Poisson's ratio [-] ν=0.18

S1 Ultimate comp. strength [MPa] fc=35.0

S1 Ultimate tens. strength [MPa] ft=3.79

S1 Ultimate comp. strain [-] εcu=0.0035

S6 Concrete Young's mod. [GPa] Ec=32.42

S6 Poisson's ratio [-] ν=0.18

S6 Ultimate comp. strength [MPa] fcdiag=35.0

S6 Ultimate tens. strength [MPa] ft=3.5

S6 Ultimate comp. strain [-] εcu=0.0035

S1 Reinf. steel Young's mod. [GPa] Es=206.91

S1 Yield stress [MPa] fy=431

S1 Ultimate strain [-] εsu=0.025

S6 Reinf. steel Young's mod. [GPa] Es=206.91

S6 Yield stress [MPa] fydiag=459

S6 Ultimate strain [-] εsu=0.025

In this example a simply supported slab will be analysed. The analysed case comes from Ref.
[26] where experimental results were shown. The corners of the slabs can uplift, there were no
anchoring to the simply supports at corners. S1 and S6 slabs differ from each other, while in S1
slab parallel reinforcements were applied with edges, in S6 diagonal (45 degree to the edges)
reinforcements were applied. The applied loads were 16 surface loads on 5/5cm square patches,
see  Fig.  84.  The  material,  geometric  and  other  properties  can  be  seen  in  the  table  above.
Reinforcements were applied on bottom sides in both cases. The-FEM-Design model with the
applied mesh and loads can be seen in Fig. 85.
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First of all the ultimate load will be calculated according to the yield line theory, (see Ref. [3]).
The ultimate bending moment capacities of the sections are as follows, which will be the basics
of the yield line calculation method:

S1 slab:
In x direction:
Equilibrium equations:

xcx⋅f c= f y⋅asx ; m x' Rd= f y asx (d x−
xcx

2
)

The solution of the above equations:

m x' Rd=4.29kNm /m , xcx=2.89mm
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84. Figure - Simply supported square slab with 16 “point” loads
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85. Figure - FEM-Design model with the applied loads and default mesh
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In y direction:
Equilibrium equations:

xcy⋅f c= f y⋅asy ; m y ' Rd= f y a sy(d y−
xcy

2
)

The solution of the above equations:

m y ' Rd=4.52kNm /m , xcy=3.46mm

Average ultimate moment capacity:

mRd=
m x' Rd+m y ' Rd

2
=4.4kNm /m

For simplicity assume a total uniform distributed load instead of the real 16 “point” loads, the
yield line theory gives the following ultimate load-bearing capacity (as resultant force):

p yield line⋅edisp
1
3

L2
=2 L mRd

4
L

edisp ; p yield line L2
=24mRd=24⋅4.4=105.6kN

S6 slab:
In x diagonal direction:

• Equilibrium equations:

xcx⋅f c= f ydiag⋅asxdiag ; m x' Rd diag= f ydiag asxdiag (d x−
xcx

2
)

• The solution of the above equations:
m x' Rd diag=3.92kNm /m , xcx=2.63mm

In y diagonal direction:
• Equilibrium equations:

xcy⋅f c= f ydiag⋅asydiag ; m y ' Rd diag= f ydiag asydiag (d y−
xcy

2
)

• The solution of the above equations:
m y ' Rd diag=4.04kNm /m , xcy=3.08mm

Average ultimate moment capacity:

mRd diag=
mx ' Rd diag+m y ' Rd diag

2
=3.98kNm /m

Assuming a total uniform distributed load instead of the 16 “point” loads the yield line theory
gives the following ultimate load-bearing capacity (resultant load):

p yield line L2
=24mRd diag=24⋅3.98=95.52 kN
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In FEM-Design seven different cases were considered in S1 and S6 slabs as well. In every case
10 concrete shell core layers and two bottom reinforcement layers (x' and y') were considered.

– Fine  element  group,  average  mesh  size:  0.07  m,  tension  stiffening  (option:  Hinton,
parameter: 0.6) with concrete hardening, Initial load step 1%.

– Standard element group, average mesh size: 0.07 m, tension stiffening (option: Hinton,
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86. Figure - S1 slab results, load vs deflection, experimental and FEM-Design results
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87. Figure - S6 slab results, load vs deflection, experimental and FEM-Design results
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parameter: 0.6) with concrete hardening, Initial load step 1%.

– Fine  element  group,  average  mesh  size:  0.07  m,  tension  stiffening  (option:  Hinton,
parameter: 0.6) with concrete hardening, Initial load step 10%.

– Fine element group, default average mesh size: 0.14 m, tension stiffening (option: Hinton,
parameter: 0.6) with concrete hardening, Initial load step 1%.

– Fine  element  group,  average  mesh  size:  0.07  m,  tension  stiffening  (option:  Hinton,
parameter: 0.7) with concrete hardening, Initial load step 1%.

– Fine element group, average mesh size: 0.07 m, without tension strength, with concrete
hardening, Initial load step 1%.

– Fine element group, average mesh size: 0.07 m, without tension strength, with concrete
hardening, Initial load step 10%.

Based on Fig. 86 and Fig. 87 we can say that S1 and S6 experimental results are very close to
the FEM-Design default mesh results, however the denser mesh results show the proper results
based on mesh density tests. The 0.07m average mesh size results are very very close to the
yield  line  solution  as  well.  The  experimental  sustained  loads  higher  than  their  theoretical
collapse  load  determined by the  yield-line  theory or  with  FEM-Design.  This  is  attributable
partly to the strain hardening of the reinforcement (which was excluded from the calculated
results).  Another  effect  which  considerably  influences  load-carrying  capacity  is  the  tensile
membrane action which develops at high deflections. At these high deflections, loads are no
longer carried to the supports by normal bending action as the penetration of tensile cracks to
the top surface illustrates. 

It  is  important  to  note  that  without  the  tension  strength  consideration  (see  Fig.  86-87)  the
ultimate load level only slightly differs from the tension stiffening cases.

It is also important to note that the 1% and 10% initial load step cases provided the same results
and approximately the same ultimate load levels as well.

Fig. 88 shows the bottom concrete layer conditions in the integration points of S1 and S6 slabs
at ultimate load levels with the first setting case. Almost every points are in cracked condition. 

Fig. 89 shows the top concrete layer conditions in the integration points of S1 and S6 slabs at
ultimate  load  levels  with  the  first  setting  case.  Along  the  main  diagonals  of  the  slabs  the
concrete is in plastic condition which fits with the yield line theory.

Fig. 90 shows the x' and y' reinforcement layer conditions in the integration points of S1  slab at
ultimate  load  levels  with  the  first  setting  case.  Along  the  main  diagonals  of  the  slabs  the
reinforcements are plastic condition which fits with the yield line theory.

Fig.  91 shows  the  +45°  directional  reinforcement  and  –45°  directional  reinforcement  layer
conditions in the integration points of S6 slab at ultimate load levels with the first setting case.
Because the reinforcements were applied in the diagonal directions only one diagonal of the
reinforcement is in plastic condition separately which fits with the yield line theory.

Fig. 92 shows the unbalanced moments at the first unstable state in the iteration process for S1
and S6 slabs with the first setting case. The pattern of the unbalanced moments follows the
diagonals in both cases which fits with the yield line theory.
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88. Figure - FEM-Design results about the conditions of the integration points
Bottom concrete layer

Left: S1 slab and Right S6 slab
Colour palette schema: 

Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)

89. Figure - FEM-Design results about the condition of the integration points
Top concrete layer

Left: S1 slab and Right S6 slab
Colour palette schema: 

Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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90. Figure - FEM-Design results about the condition of the integration points
Left: S1 slab x' directional reinforcement, Right: S1 slab y' directional reinforcement

Colour palette schema: 
Elastic (yellow), Plastic (red)

91. Figure - FEM-Design results about the condition of the integration points
Left: S6 slab +45° directional reinforcement, Right: S6 slab –45° directional reinforcement

Colour palette schema: 
Elastic (yellow), Plastic (red)
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92. Figure - FEM-Design results about the unbalanced moments in first unstable state
Left: S1 slab, Right: S6 slab
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6.1.9 Clamped square slab compared with analytical and numerical calculations

Section and material properties

Thickness [mm] h=200

Slab length [mm] L=5000

Effective depth, both in x and y direction [mm] d=170

Effective depth, both in x and y direction [mm] d'=30

Reinf. bottom x and y direction [mm2/m] as=2094 (ϕ20/150)

Reinf. top x and y direction [mm2/m] a's=2094 (ϕ20/150)

Concrete Young's mod. [GPa] Ec=34

Poisson's ratio [-] ν=0.0

Ultimate comp. strength [MPa] fc=35.0

Ultimate tens. strength [MPa] ft=3.2

Strain at peak stress [-] εc2=0.002

Ultimate comp. strain [-] εcu=0.0035

Reinf. steel Young's mod. [GPa] Es=210

Yield stress [MPa] fy=500

Ultimate strain [-] εsu=0.05

Consider  a  clamped square  slab  of  reinforced concrete  loaded by the  uniformly distributed
transverse load  p  as illustrated in Fig.  93. The “exact” ultimate load level according to limit
analysis with perfectly plastic mu ultimate moment capacity in negative and positive directions
as well and with complicated yield line was demonstrated in Ref. [27]:

pu=42.851
mu

L2
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Here,  in  this  case  it  should  be  noted  that  based  on  simpler  (commonly  used)  yield  line
consideration the ultimate load level is a bit higher:

pu=48
mu

L2

First of all let's calculate and approximate ultimate bending moment capacity of the reinforced
concrete slab cross-section provided in the table above.

If the reinforcement is elastic the stress in the top or bottom reinforcement considering their own
effective depth can be calculated with the following approximation:

σ s=
E s⋅ε cu⋅d

1.25 xc

−E s⋅ε cu=588
d
xc

−735[MPa ] .

The equilibrium equations, sum of forces and moments are as follows:

xc⋅f c−(588
d '
xc

−735)a s'= f y⋅as ; mu=(588
d '
xc

−735)as '⋅(d '−
xc

2
)+ f y as(d−

xc

2
)

These two equations need to be solved. The compressed zone position: xc=26.21mm , the
stress  in  bottom  reinforcement σ sbot=500MPa (tension,  yielding),  the  stress  in  top
reinforcement σ s ' top=−61.94MPa (compression, elastic).

Based on these results the ultimate bending moment capacity by hand calculation:

mu=162kNm /m .

The ultimate load-bearing capacity of the square clamped slab according to Ref. [27]:
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93. Figure - Square clamped slab
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pu=42.851
mu

L2=278 kNm /m

In the comparison with FEM-Design this ultimate load level and some numerical limit analysis
results will be shown based on Ref.  [22]. In FEM-Design a clamped slab was modelled using
the input data from the table above. The geometry, mesh and load can be seen in Fig. 94.

The FEM-Design elasto-plastic calculation settings are in Fig.  95. Because the limit analysis
reference neglected the tension strength of concrete in the calculation, therefore in the FEM-
Design calculation the tension strength was also neglected in the concrete material flow rule.
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95. Figure – FEM-Design plastic data set

94. Figure – FEM-Design model with the mesh, load and boundary conditions
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The load-displacement curve in Fig. 96 shows the FEM-Design results, the Ref. [22] results and
the analytical ultimate load level as well. The black stars in this diagram shows the assumed
ultimate loads according to Ref.  [22] with different strain limit  considerations (nodal value,
averaging values) based on limit analysis where the strain check is a post-processing method
after the analysis.

There are two sets of numerical analysis here. The first one which shows higher rigidity are the
results which belong to that case where the clamped edges were restrained against horizontal
displacements as well. The curve by Vestergaard (red) is not fully shown here because the top of
the curve was cut off in the publication. These results show globally higher rigidity, because by
a reinforced concrete section there will be coupling between bending and in-plane effects and
due to the horizontal supports high amount of in-plane forces also occurs. 

The second set of numerical analysis shows lower rigidity because in these cases there were no
horizontally restrain on the edges. The FEM-Design results are in good agreement with the limit
analysis (Ref. [22]) considering that the elasto-plastic calculation could involve the limit strain
values as well. 

The three different curves in both sets are as follows:
– Limit analysis result based on Ref. [22]
– FEM-Design with strain limit consideration in concrete and reinforcement as well
– FEM-Design without strain limit considerations
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96. Figure – Load-deflection curves according to the different cases
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The ultimate load levels are as follows where they are available:
In case of horizontal support:

phorizontal supportVestergaard with nodal strain limit=306 kN /m 2

phorizontal support FEM−Designwith strain limit=300kN /m2

phorizontal support FEM−Designwithout strain limit=560 kN /m 2

Without horizontal supports:

pVestergaard with nodal strain limit=165 kN /m2

pVestergaard with average strainlimit 1=240 kN /m 2

pVestergaard with average strainlimit 2=255 kN /m2

pFEM −Designwith strainlimit=200 kN /m 2

pFEM −Designwithout strain limit=248kN /m2

The analytical ultimate load limit was 278kN/m2, but note that it belongs to a perfectly plastic
moment  capacity.  This  value  is  a  theoretical  limit  considering  perfectly  plastic,  symmetric
behaviour in positive and negative moment directions.

The FEM-Design results were in good agreement with the analytical result and with the limit
analysis results as well. There is 10% difference between the FEM-Design ultimate load result
without strain limit check and the analytical solution, but do not forget that the analytical result
assumed perfectly plastic moment behaviour without shifting the neutral axis. This is similar to
the steel material where the compression and tension behaviour are similar to each other, but
here  in  case  of  reinforced  concrete  the  neutral  axis  is  shifting  because  of  the  non-linear
behaviour of concrete and reinforcement steel coupling.

FEM-Design results also follow the limit  analysis  load-deflection results as well.  In case of
consideration of the strain limits  in FEM-Design, the results  and the ultimate load capacity
contains the strain check inside the calculation algorithm compared to the limit analysis results,
where the limit strain checks and the ultimate load levels depend on a post-processing method.
Where the limit strain was considered in the nodes by the limit analysis the ultimate load level
was way below the analytical result (40%). In case of limit analysis where the post-processing
strain  checks  were  performed  along  the  edge  zones  (strain  limit  method  1  considered  an
averaging  zone  a=h/4  and  strain  limit  method  2  considered  an  averaging  zone  a=h/2)  the
ultimate load was closer to the theoretical analytical solution. In these two cases the differences
are 14% and 8%, see Fig. 96 as well. In case of FEM-Design result where the limit strains were
considered, the difference was 28%, thus the “real” ultimate load should be around 200kN/m2.
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6.1.10 In-plane loading of shear walls with perforations and with different reinforcements 
and loading conditions compared with experimental data

Section and material properties

Thickness [mm] h=70

Panel size [mm] L=890/890 (hole: 150/150)

Compression strength of concrete PC1A [MPa] fc=27.9

Compression strength of concrete PC2 [MPa] fc=25.5

Compression strength of concrete PC3 [MPa] fc=26.8

Compression strength of concrete PC4 [MPa] fc=24.9

Compression strength of concrete PC5 [MPa] fc=29.0

Compression strength of concrete PC6 [MPa] fc=25.7

Compression strength of concrete PC7 [MPa] fc=28.7

Compression strength of concrete PC8 [MPa] fc=27.3

Compression strength of concrete PC9 [MPa] fc=28.0

Strain at peak stress [-] εc2=0.00182 (average value)

Ultimate comp. strain [-] εcu=0.0035

Concrete Young's mod. [GPa] Ec=21.58

Poisson's ratio [-] ν=0.15

Ultimate tens. strength [MPa] ft=2.5 (average value)

Reinforcement ratio in x direction [-] ρx= 0.0165

Reinforcement ratio in y direction [-] ρy= 0.00825

Reinf. steel Young's mod. PC1A, PC2, PC3 [GPa] Es=196.8

Reinf. steel Young's mod. PC4, PC5, PC6 [GPa] Es=202.7

Reinf. steel Young's mod. PC7, PC8, PC9 [GPa] Es=195.0

Yield stress of reinforcements PC1A, PC2, PC3 [MPa] fy=500

Yield stress of reinforcements PC4, PC5, PC6 [MPa] fy=260

Yield stress of reinforcements PC7, PC8, PC9 [MPa] fy=390

Ultimate strain of reinforcements [-] εsu=0.0225

In this verification example in-plane loaded shear panels will be analysed. Three different panel
types will be analysed applying three different load conditions. The FEM-Design results will be
compared with experimental results from Ref. [28]. The three different panel types can be seen
in Fig.  97, the first panel type (Panel Type I) is a regular panel (size 890mm/890mm) with
double amount of reinforcements in horizontal direction compared to vertical, the second panel
(Panel Type II) has the same outer dimensions and reinforcements but there is a hole in the
middle  (with  size  150mm/150mm),  the  third  panel  type  (Panel  Type  III)  has  the  same
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perforation at centre area but there is additional reinforcements around the edges of the hole, see
Fig. 97. The amount of additional reinforcements around the hole in Panel Type III is equal to
what  is  left  out  due  to  holes,  see  also  Fig.  97.  The  material  properties  of  concrete  and
reinforcements can be seen in the table above.

In the first loading condition (Load Type I) there is pure shear on the edges, in the second load
condition (Load Type II) there is shear force on the edges and there are compression forces
along the edges as well in both directions. The third load pattern (Load Type III) contains shear
load as well, and additional tension force in both directions along the edges, see Fig. 98.

In the experimental tests 9 different test specimens were analysed:

– PC1A test case: Panel Type I with Load Type I

– PC2 test case: Panel Type II with Load Type I

– PC3 test case: Panel Type III with Load Type I

– PC4 test case: Panel Type I with Load Type II

– PC5 test case: Panel Type II with Load Type II

– PC6 test case: Panel Type III with Load Type II

– PC7 test case: Panel Type I with Load Type III

– PC8 test case: Panel Type II with Load Type III
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98. Figure - Three different load pattern 
Load Type I, Load Type II and Load Type III

shear force: p shear force: p
compression x: 0.39p
compression y: 0.39p

shear force: p
tension x: 0.32p
tension y: 0.32p

97. Figure - Three different shear panel types with the schematic drawings of the reinforcements
Panel Type I, Panel Type II and Panel Type III
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– PC9 test case: Panel Type III with Load Type III

In FEM-Design three different calculation settings were considered in every 9 cases. In the first
settings the tension stiffening rule was the Hinton rule with parameter 0.7. In the second settings
the tension stiffening rule was the Vecchio rule with parameter 500 and in the third settings the
tension strength of the concrete was excluded from the model, see Fig. 99.

In  the  next  paragraphs the  experimental  test  results  and the  ultimate  load  capacities  of  the
different panels will be described and compared with FEM-Design results.

Fig. 100 shows the load vs. shear strain diagrams in case of panel PC1A.

Experimental test result ultimate load level:

pPC1A test=400 kN /m ,
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100. Figure - PC1A test case with Panel Type I and with Load Type I
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99. Figure - FEM-Design plastic data sets
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FEM-Design ultimate load levels with the different tension stiffening settings:

pPC1A FD Hinton0.7=370 kN /m , pPC1A FD Vecchio 500=380 kN /m , pPC1A FD no tens. strength=370 kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results (within 5%) as the path of the load vs shear strain diagram in case of Vecchio tension
stiffening rule. Before failure the reinforcements are in elastic states in both directions thus the
failure occurs in concrete and there are diagonal cracks, see Fig. 101.

Fig. 102 shows the load vs. shear strain diagrams in case of panel PC2.

Experimental test result ultimate load level:

pPC2 test=310 kN /m ,
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102. Figure - PC2 test case with Panel Type II and with Load Type I
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101. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of Hinton
rule

Panel PC1A Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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FEM-Design ultimate load levels with the different tension stiffening settings:

pPC2 FD Hinton 0.7=260 kN /m , pPC2 FD Vecchio 500=270 kN /m , pPC2 FD notens. strength=260kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test  results (within 15%) as the path of the load vs shear strain diagram in case of Vecchio
tension stiffening rule. Before failure the concrete and the reinforcements plastic conditions can
be seen in Fig.  103. There is failure in concrete around the perforation and its corners. The
reinforcements are in yield condition around corners in x and y directions as well.

Fig. 104 shows the load vs. shear strain diagrams in case of panel PC3.

Experimental test result ultimate load level:
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104. Figure - PC3 test case with Panel Type III and with Load Type I
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103. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC2 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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pPC3test=340kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC3 FD Hinton0.7=290 kN /m , pPC3 FD Vecchio 500=300 kN /m , pPC3 FD no tens. strength=290kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test  results (within 12%) as the path of the load vs shear strain diagram in case of Vecchio
tension stiffening rule. Before failure the concrete and the reinforcements plastic conditions can
be seen in Fig.  105. There is failure in concrete around the perforation and its corners. The
reinforcements are in yield condition around corners in x and y directions as well, but due to the
additional reinforcements around the perforation the area of the yielding is smaller.

Summary about the Load Type I cases in light of ultimate loads and expectations.

Test results, without perforation, with perforation and perforation with additional reinforcement:

pPC1A test=400 kN /m , pPC2 test=310 kN /m , pPC3test=340 kN /m

FEM-Design ultimate load levels with the same sequence:

pPC1A FD=380 kN /m , pPC2 FD=270 kN /m , pPC3 FD=300kN /m

The expected ultimate load levels revealed in test results and FEM-Design calculations as well.
Panel PC1A needs to have the greatest ultimate load level. The lowest should be in panel PC2,
due to the perforation.  PC3 panel ultimate load-bearing capacity needs  to be between these
values thanks to the additional reinforcements. These expectations fulfilled in the experimental
data and the FEM-Design results as well, and the ultimate limit loads are close to the test results.
We can say that FE calculation follows the non-linear behaviour of these types of panels in a
reasonable manner. The figures about the plasticity and failure condition visualize the failure
mode perfectly. The ultimate load level is almost independent of the selected tension stiffening
rule, see Fig. 100, 102 and 104.
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105. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC3 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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Fig. 106 shows the load vs. shear strain diagrams in case of panel PC4.

Experimental test result ultimate load level:

pPC4 test=340 kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC4 FD Hinton 0.7=360 kN /m , pPC4 FD Vecchio 500=410 kN /m , pPC4 FD notens. strength=360kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
107.  There  are  diagonal  cracks  in  concrete.  The  reinforcement  in  y  direction  is  in  yield
condition.
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106. Figure - PC4 test case with Panel Type I and with Load Type II
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107. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC4 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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Fig. 108 shows the load vs. shear strain diagrams in case of panel PC5.

Experimental test result ultimate load level:

pPC5 test=269 kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC5 FD Hinton 0.7=260 kN /m , pPC5 FD Vecchio 500=280 kN /m , pPC5 FD notens. strength=250kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
109. There is failure in concrete around the perforation and its corners. The reinforcements are
in yield condition around corners in x and y directions as well. The area of the yielding in the
reinforcement much larger compared to panel PC2 (see Fig. 103) because in this case here there
was additional compression force on the edges.
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108. Figure - PC5 test case with Panel Type II and with Load Type II
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Fig. 110 shows the load vs. shear strain diagrams in case of panel PC6.

Experimental test result ultimate load level:

pPC6 test=284kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC6 FD Hinton0.7=300 kN /m , pPC6 FDVecchio 500=330 kN /m , pPC6 FD no tens. strength=290 kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
111. There is plasticity in concrete around the perforation and its corners. The reinforcements
are in yield condition around corners in x and y directions as well. The area of the yielding in
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109. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC5 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)

110. Figure - PC6 test case with Panel Type III and with Load Type II
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the reinforcement is a bit smaller compared to panel PC5 (see Fig. 109) because in this case here
there was additional reinforcements along the edges.

Summary about the Load Type II cases in light of ultimate loads and expectations.

Test results, without perforation, with perforation and perforation with additional reinforcement:

pPC4 test=340 kN /m , pPC5 test=269 kN /m , pPC6 test=284kN /m

FEM-Design ultimate load levels with the same sequence:

pPC4 FD=360 kN /m , pPC5 FD=260 kN /m , pPC6 FD=290kN /m

The expected ultimate load levels revealed in test results and FEM-Design calculations as well.
Panel PC4 needs to have the greatest ultimate load level. The lowest should be in panel PC5,
due to the perforation.  PC6 panel ultimate load-bearing capacity needs  to be between these
values thanks to the additional reinforcements. These expectations fulfilled in the experimental
data and the FEM-Design results as well, and the ultimate limit loads are very close to the test
results. We can say that FE calculation follows the non-linear behaviour of these types of panels
in  a  reasonable  manner.  The figures  about  the  plasticity and failure  condition  visualize  the
failure mode perfectly. The ultimate load level is almost independent of the selected tension
stiffening rule, see Fig. 106, 108 and 110.
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111. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of Hinton
rule

Panel PC6 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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Fig. 112 shows the load vs. shear strain diagrams in case of panel PC7.

Experimental test result ultimate load level:

pPC7 test=255kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC7 FD Hinton0.7=240 kN /m , pPC7 FDVecchio 500=290 kN /m , pPC7 FDno tens. strength=230 kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
113.  There  are  diagonal  cracks  in  concrete.  The  reinforcement  in  y  direction  is  in  yield
condition.
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112. Figure - PC7 test case with Panel Type I and with Load Type III
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113. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC7 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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Fig. 114 shows the load vs. shear strain diagrams in case of panel PC8.

Experimental test result ultimate load level:

pPC8 test=200kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC8 FD Hinton 0.7=190kN /m , pPC8 FD Vecchio 500=210 kN /m , pPC8 FD notens. strength=160kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
115. There are diagonal cracks in concrete. The reinforcements are in yield condition around
corners in x and y directions as well.
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114. Figure - PC8 test case with Panel Type II and with Load Type III
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115. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC8 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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Fig. 116 shows the load vs. shear strain diagrams in case of panel PC9.

Experimental test result ultimate load level:

pPC9 test=217kN /m ,

FEM-Design ultimate load levels with the different tension stiffening settings:

pPC9 FD Hinton 0.7=210 kN /m , pPC9 FD Vecchio 500=220 kN /m , pPC9 FD notens. strength=190kN /m

We can say that the ultimate load level based on FEM-Design is very close to the experimental
test results as the path of the load vs shear strain diagram in case of Vecchio tension stiffening
rule. Before failure the concrete and the reinforcements plastic conditions can be seen in Fig.
117. There is plasticity in concrete around the perforation and its corners. The reinforcements
are in yield condition around corners in x and y directions as well. The area of the yielding in
the reinforcement is a bit smaller compared to panel PC8 (see Fig. 115) because in this case here
there was additional reinforcements along the edges.
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116. Figure - PC9 test case with Panel Type III and with Load Type III
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Summary about the Load Type III cases in light of ultimate loads and expectations.

Test results, without perforation, with perforation and perforation with additional reinforcement:

pPC7 test=255kN /m , pPC8 test=200kN /m , pPC9 test=217kN /m

FEM-Design ultimate load levels with the same sequence:

pPC7 FD=240kN /m , pPC8 FD=190kN /m , pPC9 FD=210 kN /m

The expected ultimate load levels revealed in test results and FEM-Design calculations as well.
Panel PC7 needs to have the greatest ultimate load level. The lowest should be in panel PC8,
due to the perforation.  PC9 panel ultimate load-bearing capacity needs  to be between these
values thanks to the additional reinforcements. These expectations fulfilled in the experimental
data and the FEM-Design results as well, and the ultimate limit loads are very close to the test
results. We can say that FE calculation follows the non-linear behaviour of these types of panels
in  a  reasonable  manner.  The figures  about  the  plasticity and failure  condition  visualize  the
failure mode perfectly. The ultimate load level is almost independent of the selected tension
stiffening rule, see Fig. 112, 114 and 116.
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117. Figure - The plastic state of concrete, reinforcement in x and reinforcement in y directions in case of
Hinton rule

Panel PC9 Colour palette schema: 
Elastic (yellow), Plastic (red),One crack (light purple), Two cracks (dark purple), Crushing/Fracture (blue)
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6.1.11 Four-Story stairwell with openings and coupling effect between bending and 
membrane effects

Section and material properties

Thickness [mm] h=180

Effective depth, both in x and y direction [mm] d=150

Effective depth, both in x and y direction [mm] d'=30

Reinf. bottom x and y direction [mm2/m] as=335 (ϕ8/150)

Reinf. top x and y direction [mm2/m] a's=335 (ϕ8/150)

Concrete Young's mod. [GPa] Ec=33

Poisson's ratio [-] ν=0.0

Ultimate comp. strength [MPa] fc=30.0

Ultimate tens. strength [MPa] ft=3.0

Strain at peak stress [-] εc2=0.002

Ultimate comp. strain [-] εcu=0.0035

Reinf. steel Young's mod. [GPa] Es=200

Yield stress [MPa] fy=550

Ultimate strain [-] εsu=0.049

In this  example the FEM-Design plastic  shell  applicability for modelling large structures  is
demonstrated  for  a  four-story RC stairwell  with  openings,  see  Fig.  118.  The  example  was
analysed by Ref.  [22].  In the mentioned reference the used numerical  method to obtain the
ultimate load level was the limit state analysis where the combined behaviour of membrane and
bending effect was considered as well. The individual walls are simply supported at the base,
and the structure is subjected to uniform shear load along the top of the wall with the openings,
see Fig. 118. The stairwell width, depth, and height are taken as 3.6 m, 6.6 m, and 16 m, see Fig.
118. The openings with width 0.9 m and height 2.1 m are positioned 0.3 m from the wall edge.
The walls  have  uniform thickness  180 mm.  The reinforcements  are  two-layered  orthogonal
schema, see the table above with the details. The material properties also can be found in the
table above. In the benchmark example the tension strength of the concrete was excluded from
the calculation. Two different calculations were performed in the mentioned reference, first the
load-top displacement curve was calculated considering only membrane effect in the structure,
second the combined membrane-bending effect was taken into account in the calculation of the
load-top displacement curve. In FEM-Design the first case - where only the membrane effect
was considered - was approximated with hinged connection along the edges of the wall. This is
not exactly the same modelling technique but serves an adequate result in this case because in
FEM-Design the combined behaviour of membrane and bending always considered. The second
case was modelled with fixed rigid connection between the edges to perform a moment bearing
joints along the edges just like in the mentioned reference. In FEM-Design two different plastic
shell settings were considered for both structural cases. In the first one the tension strength was
neglected as in the reference but in the second case a tension stiffening rule with Hinton rule and
parameter 0.7 was used, see Fig. 119. 
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118. Figure - Four-story stairwell geometry, load and mesh

119. Figure - FEM-Design plastic data sets
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The following four different calculations were performed in FEM-Design:

– Case A: Concrete without tension strength + continuous fixed wall edges against moment

– Case B: Concrete without tension strength + hinged edge connections

– Case C: Concrete with tension stiffening + continuous fixed wall edges against moment

– Case D: Concrete with tension stiffening + hinged edge connections

In these analysis 10 concrete layers and x and y directional reinforcement on top and bottom
surfaces were considered. The average mesh size was 0.3 m, see Fig. 118.

Fig.  120 shows the benchmark results based on Ref.  [22] and the four different FEM-Design
results.  However  it  should  be  noted  here  that  the  ultimate  load-bearing  capacity  is  NOT
provided in the mentioned reference only the load-displacement curve based on limit analysis.
In limit  analysis  the  ultimate strain check is  a  result  of  post  processing,  therefore the load
displacement  curves  don't  really  show the  ultimate  load-bearing  capacity in  these  cases.  In
FEM-Design the ultimate strain check is involved into the non-linear calculation process, thus
the ultimate load can be read from the load-displacement curves.

Fig.  121 shows the displacements in Case A and C based on FEM-Design calculation at the
ultimate load levels.
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120. Figure - Shear load vs. maximum displacement curves
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Fig.  122 shows the first principal normal forces (N1) in Case A and C based on FEM-Design
calculation at the ultimate load levels.
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121. Figure - The total displacements [mm]

122. Figure - First principal normal forces (N1 – [kN/m])
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Fig. 123 shows the second principal normal forces (N2) in Case A and C based on FEM-Design
calculation at the ultimate load levels.

Fig.  124 shows the  first  principal  moments  (M1)  in  Case  A and C based on FEM-Design
calculation at the ultimate load levels.
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123. Figure - First principal normal forces (N2 – [kN/m])

124. Figure - First principal moments (M1 – [kNm/m])
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Fig.  125 shows the second principal moments (M2) in Case A and C based on FEM-Design
calculation at the ultimate load levels.

Fig.  126 shows the bottom concrete layer plastic condition results in Case A and C based on
FEM-Design calculation at the ultimate load levels.
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125. Figure - Second principal moments (M2 – [kNm/m])

126. Figure - Bottom concrete layer plastic condition results
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Fig. 127 shows the top concrete layer plastic condition results in Case A and C based on FEM-
Design calculation at the ultimate load levels.

Fig. 128 shows the bottom x directional reinforcement layer plastic condition results in Case A
and C based on FEM-Design calculation at the ultimate load levels.
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127. Figure - Top concrete layer plastic condition results
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Fig. 129 shows the top x directional reinforcement layer plastic condition results in Case A and
C based on FEM-Design calculation at the ultimate load levels.

Fig. 130 shows the bottom y directional reinforcement layer plastic condition results in Case A
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128. Figure - The bottom x directional reinforcement layer
plastic condition

129. Figure - The top x directional reinforcement layer
plastic condition
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and C based on FEM-Design calculation at the ultimate load levels.

Fig. 131 shows the top y directional reinforcement layer plastic condition results in Case A and
C based on FEM-Design calculation at the ultimate load levels.
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130. Figure - The bottom y directional reinforcement layer
plastic condition
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The ultimate shear load level of the structure based on FEM-Design calculation is:

pshear FD≈150 kN /m

pshear FD , hinged≈102kN /m

The load displacement curve from FEM-Design with the proper settings follows the Ref.  [22]
values and taken into account that the benchmark doesn't provide exactly the ultimate load level
considering strain check, the ultimate load level of the structure should be around the value what
FEM-Design provided due to the fact that in FEM-Design the ultimate strains were considered
in the calculations. In the different FEM-Design calculations the ultimate load levels are the
same regardless the tension stiffening rules. The hinged case calculation result exactly matches
with the membrane type calculation of the mentioned reference. In this case the strain limit was
not the critical part, as you can see in Fig. 120. In the fixed continuous edge case the ultimate
load based on FEM-Design is adequate, because it considers the strain limits as well, see Fig.
120 The reference  result  shows the  load-displacement  curve  without  the  proper  strain  limit
check that is why it gives higher load-bearing capacity on the curve but that is only theoretical
without the strain limit checks according to the limit analysis!

Thus we can say that FEM-Design provided the proper load-bearing capacity in the simplified
case and in the advanced case as well, where the strain limits were considered properly in the
calculation.
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131. Figure - The top y directional reinforcement layer
plastic condition
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7 Structural steel application of the plastic shell theory

7.1 Verification examples
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